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Abstract—Modern computer systems are increasingly bounded by the available or permissible power at multiple layers from
components to systems. To cope with this reality, it is necessary to understand how power bounds impact the design and performance
of emergent computer systems. Prior work mainly focuses on power capping and budgeting on individual components without
coordinating them to achieve the best possible performance. In this work, we study the problem of power bounded computing and
power allocation across computer components on CPU and GPU-accelerated systems. We investigate the dynamics between
cross-component power allocation and generalize the performance impacts, and propose lightweight heuristics to maximize
performance. We draw multiple insights: (1) for a given application and power bound, there exists a maximum achievable performance
which requires coordinated power allocation among components for balanced computation and memory access; (2) the max
performance increases with the total power bound but only in a definite range specific to applications; (3) the dynamics of power
allocations has categorical patterns with regard to performance trends and actual power use; (4) the categorical patterns can be
leveraged to design coordinated power allocations. These findings suggest the promises of cross-component coordination in
forthcoming power bounded high performance computing.

Index Terms—Power-bounded computing, cross-component power coordination, power capping, performance analysis, power
management.

F

1 INTRODUCTION

Modern computer systems are increasingly bounded by the
available or permissible power at multiple levels ranging
from components and machines to clusters and data cen-
ters [1]. For example, computer components must operate
within their thermal design power, and the first exascale
systems are imposed with a power budget of 20 – 30
megawatts [29]. Such power bounds are set due to physical,
technical, and economical reasons. First, the cooling devices
and facilities for components, machines and server rooms
have certain capacities which set the ceiling of permissible
power density. Second, the available power capacities along
the path from power source to buildings and servers have
practical upper bounds. Third, the energy cost for powering
up computer systems can be significant or even prohibitive.
At the typical rate of ¢10/joule in U.S., the annual energy
bill for an exascale computer is $20 – 30 million. Never-
theless, while bounded by power, systems are expected to
continue to sustain the performance growth. The upcoming
exascale computers must deliver more than doubled perfor-
mance with the same power budget, and future generations
face the same expectations. Power has been constraining
HPC scalability, availability and affordability and it is urgent
to develop technologies that optimize performance under
power bounds.

Today’s systems and building blocks make the problem
more challenging. First, they have a significant larger power
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envelop. For example, a compute node of the Summit su-
percomputer integrates 44 CPU cores, 6 high end GPUs, 512
GB DDR4 memory, and 96 GB HBM2 memory. The peak
power consumption exceeds 2,800 Watts. Inefficient use of
such a big power envelop would lead to significant waste.
Second, unlike previous generations where CPUs are the
only dominating power consumer, today’s systems have
multiple major consumers, i.e., CPUs, GPUs, and memory.
Memory may consume more power than processors on big-
memory systems [2], and high end GPUs consume compa-
rable or more power than CPUs. These components must
be simultaneously managed to maximize performance un-
der limited power. Third, hardware resources are generally
overprovisioned. Most applications are unable to fully uti-
lize all the hardware all the time, and CPU algorithms don’t
use GPUs while GPU algorithms typically only use CPUs
for kernel offloading and data management. Activating
components without disparity not only wastes the limited
available power but also suffers suboptimal performance.
Hence, maximizing performance under limited power is
complicated at an unprecedented level.

Prior work has predominately focused on individ-
ual components, resulting in suboptimal performance and
power efficiency. Power aware computing exploits DVFS
capable components and lowers their performance states
when the full capacity is not needed [14, 24, 28]. Power
capping ensures component power within the specified cap
through software managed hardware technologies on CPUs,
memory, and GPUs [13, 22]. Little work has studied multiple
components. Hanson et al [9, 19] has studied power shifting
between processors and memory and proposed feedback
based control to adjust their distribution, and Coscale [15] si-



multaneously adjusts CPU and memory frequency to reduce
power consumption while meeting the target performance.
They neither pinpoint the best power coordination across
the components for a given available total power nor locate
the performance and power inefficiency caused by poor
power distributions.

Increasing performance within a bounded power bud-
get requires new methodologies on today’s systems. To
meet this need, we propose power-bounded computing that
considers power as a scarce resource and promotes cross-
component power coordination. The goal is to utilize every
watt of available power to increase application performance
and system throughput. It is advantageous for several rea-
sons. First, by viewing power instead of hardware as a
scarce resource, it centers its scheduling around power and
uses it to activate components. It is particularly suitable for
today’s systems with overprovisioned hardware but limited
power. Second, it coordinates the power distribution across
components to balance their operations, and thus gains
higher performance than approaches focusing on individual
components.

In this work we focus on power allocation on compute
nodes which are the building blocks of HPC systems. At
the node level, either compute or memory access can be
the performance bottleneck, depending on the workloads
and power allocation. We thus study the balance between
processing units and memory modules, i.e., CPUs and main
memory, and GPUs and GPU global memory. Their balance
is necessary to maximize performance for a given power
and requires coordinated power allocations. A challenge is
that a small power shift may lead to significant performance
loss. We investigate the dynamics across processor memory
in power allocation and application performance, identify
the patterns of power allocation scenarios, and develop
optimal power coordination strategies. Overall, the major
contributions of this work include:

1) We promote cross-component power coordination and
demonstrate it can improve performance significantly,
e.g., 35% for GPU computing and more for CPU com-
puting. This study is the first-of-its-kind and especially
timely as HPC systems are increasingly constrained
by power. It provides a direction on how to sustain
performance growth under limited available power.

2) We unveil the distinct patterns of performance and
power dynamics and generalize them with categoriza-
tion, and further validate them on multiple generations
of CPU and GPU architectures. Such generalization
enables the design of optimal cross-component power
allocations on modern HPC building blocks.

3) We show different workloads considerably vary in
characteristics while sharing common patterns, sug-
gesting the need of integrating application awareness
into power scheduling and management.

4) We present a heuristic algorithm to quickly pinpoint
near-optimal cross-component power allocations with
lightweight application profiling.

2 POWER BOUNDED COMPUTING
High performance, power-bounded computing is built upon
the premise that every compute node in the system can and

will operate under a given power budget. By bounding per-
node power consumption, a large-scale system is capable
of reconfiguring itself according to its current workload to
achieve better performance under the same power budget.

As per-node power is simply the sum of the power con-
sumed by all components on the node, enforcing a per-node
power limit requires allocating an appropriate amount of
power to each component in a coordinated manner. Cross-
component coordination is crucial for a compute node to de-
liver maximum application performance corresponding to a
specific power budget, particularly when power becomes
such a scarce resource that can not concurrently meet the
maximum demands of all components.

To gain insight on the dynamics between power alloca-
tion and application performance without being distracted
by the complexity of coordinating multiple closely inter-
acting components, we focus on the problem of power
coordination between processors and DRAM modules on
hosts and discrete GPU accelerators, i.e., CPUs and mem-
ory, and GPU Streaming Multiprocessing cores (SMs) and
global memory. We make this simplification based on two
observations. First, processor cores and memory modules
dominate node power consumption on current and emer-
gent HPC systems. Second, shifting power across processors
and memory affects both compute speed and data access
rate, the two primary factors that jointly determine the
performance of HPC applications.
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Fig. 1. Performance of Stream (in GB/s) with (a) CPU computing and
(b) GPU computing. Performance vs. total power budgets (left), and
performance vs. cross-component power allocations for a certain total
budget (right). The given budget is 208 W for CPU computing and 140
W for GPU computing . Bandwidth is reported for per core on a 20-core
CPU system, and total on an nVidia Titan XP GPU.

2.1 Motivating Examples
To examine the performance impact of power limit and
cross-component power coordination, we run a series of ex-
periments on an Intel Xeon 20-core IvyBridge machine and
a Nvidia Titan XP GPU accelerated machine respectively.
In these experiments, we specify a total power budget and
then distribute it among processors and memory modules
by capping the power on each individual component. We
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use the Intel’s “Running Average Power Limit” RAPL tech-
nology to cap the power for the CPU based machine, and
nvidia-settings for the discrete GPU accelerator.

Figure 1 summarizes the experimental results of enforc-
ing power bounds on processors and DRAMs for the Stream
benchmark. The CPU version is from the HPC Challenge
suite and the GPU-version is from GPU-Stream respectively.
Note the reported performance is for per-core for CPU
computing and for the entire card for GPU computing.
While CPU computing and GPU computing have different
performance and power dynamics in quantities, they both
show common important points.

First, the total power budget has a significant impact on
performance. Specifically, for a given budget, there exists
an upper bound for the achievable performance. As the
budget increases, the upper performance bound increases —
in a nonlinear manner — and then flattens once the budget
reaches a certain value. This observation holds on both CPU
and GPU computing, though the upper performance bound
reaches the maximum sooner on GPU computing.

Second, power allocation between processors and mem-
ory has a significant impact on application performance for
the same total power budget. Given a total power budget
208 Watts for CPU computing, an optimally coordinated
power allocation leads to up to 30× better performance
compared to a poorly coordinated power allocation. While
the total power budget and shifting range are smaller on
GPU, the best performance is still over 30% higher than the
poorest given 140 Watts.

Third, power capping on individual components is ef-
fective to limit system power under budgets. As shown in
the right figures, the total power consumed by processors
and memory is always under the given budget 208 Watts on
CPU computing, and 140 Watts on GPU computing.

Fourth, in both CPU and GPU computing, the provi-
sioned power budget could be fully consumed even if the
delivered performance is very poor, suggesting significant
power waste with certain power allocations.

These examples motivate us to delve into the following
research questions and seek answers to them:

1) For a given application W , what is the upper perfor-
mance bound Perfmax for a given total power budget
Pb, and what is the Perfmax ∼ Pb relationship? The
answers will provide system designers and program-
mers with performance optimization targets and proper
power budgeting policies required for sustained perfor-
mance growth with limited power.

2) For a given application W and an allowable total power
budget Pb, what is the optimal distribution ofPb among
processors and memory that ensures Perfmax ? The an-
swer will enable optimal workload and power schedul-
ing to meet optimization objectives and constraints.

3) Why do poor cross-component power allocations cause
performance and power inefficiency? The deep under-
standing will enable us to locate inefficiency bottle-
necks, and identify solutions for improvement.

4) What ranges of Pb are acceptable regarding achievable
performance and power efficiency? The answers will
guide power schedulers to set appropriate power bud-
gets and reclaim unused power for global efficiency.

2.2 The Problem of Power Bounded Computing
To answer the above questions, we formulate the problem
of power bounded computing at the node level as follows:

Given a parallel workload W , a machine M comprising a
set of K power-boundable components C1, C2, . . . , CK , and a
total power bound Pb, find the upper bound of the achievable
performance Perfmax and the corresponding power allocation
tuple α∗ = (P∗

1 , P∗
2 , . . . , P∗K ) such that:

(1) perfmax = maxα∈A perf(α, W, M),
(2) α∗ = argmaxα∈A perf(α, W, M), and
(3)

P K
i=1 P ∗

i ≤ Pb.
Here, α is a power allocation tuple and A is the space

that comprises all possible values of α. We define a com-
ponent is power-boundable if the component can and will
always operate under a power cap allocated to it. We also
note that the performance metric, perf, can have different
definitions depending on both the application and the user’s
demand. Example measures include compute rate, compute
rate to power ratio, and system throughput.

In this paper, we discuss a simplified power bounded
computing problem and the cross-component power coor-
dination under the following assumptions:
(a) The machine M consists of two types of major compo-

nents — processors and memory modules. A homoge-
neous machine concerns about multiple CPU cores and
memory modules, and a discrete heterogenous GPU
concerns about GPU cores and the global memory.

(b) All processor cores are grouped into an aggregated
component (CPU or GPU) with its power budget Pcpu
or PSM evenly distributed to all cores.

(c) All memory modules are aggregated with the power
budget Pmem evenly distributed among memory de-
vices for CPU or GPU computing.

These simplifications are valid for many MPI, OpenMP,
or CUDA parallel applications that have balanced workload
across the processing units and memory devices. Here we
focus on coordinating power between processors and mem-
ory for such systems and exploring fundamental scheduling
guidelines. We leave the investigation of unbalanced work-
loads and hybrid computing in our future work.

3 DYNAMICS OF PROCESSOR -MEMORY POWER
ALLOCATIONS
The examples in Figure 1 not only highlight that power
limits have a decisive impact on achievable performance,
but also reveal the importance of cross-component power
allocation and patterns of the dynamics. Understanding the
impacts of power limits and identifying these patterns help
us better understand the power problems and identify the
optimal power allocations in HPC.

3.1 The Effects of Power Limits
To illustrate the impacts of power limits, we conduct a set
of experiments on two generations of CPU-based multicore
systems. One consists of two Intel Xeon IvyBridge 10-core
processors capable of per-processor DVFS from 1.2 to 2.5
GHz and 256 GB 1600 MHz DDR3 memory. The other con-
sists of two Intel Xeon Haswell 12-core processors capable
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of per-core DVFS from 1.2 to 2.3 GHZ and 256 GB DDR4
memory, which has a minimum of 2133 MHz and no defined
maximum clock speed. DDR4 consumes less power, partly
due to less frequent refreshing of its content and technology
evolution. We distribute a given total power budget Pb to
processors and memory in various pairings, and repeat for
a range of total power budgets.

Figure 2 shows the overall results for DGEMM and
RandomAccess benchmarks from the HPC challenge suite.
The curve shows the variations of perfmax with Pb, and
the data points show performance from different processor-
memory power allocations. For both applications on both
systems, as the total power budget increases, the achiev-
able max performance increases monotonically at varying
rates and then flattens, though at different inflection points.
The perfmax ∼ P b curve consists of several segments.
Take DGEMM on the IvyBridge system as an example.
Performance grows very slowly when Pb is very small, i.e.,
less than 125 Watts, fast when Pb continues to increase,
then slowly again when Pb is more than 145 Watts, and
finally it stops growing once Pb is greater than 240 Watts.
The gradually flattened performance suggests diminishing
return from large power provision. While both DGEMM and
RandomAccess present similar patterns, DGEMM gains per-
formance more quickly and has a larger max power demand
than STREAM. Between the two systems, the Haswell-based
delivers better performances at small total power budgets
for a given application, mainly due to the higher power
efficiency and higher bandwidth on DDR4 than DDR3.
Nevertheless, the two systems consume similar power when
performance reaches the maximum.
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Fig. 2. Upper performance bound varies with the total power budget.
The applications are Star DGEMM and RandomAccess from the HPC
Challenge benchmark suite.

From these experiments we draw some insights for
designing power budgeting algorithms and policies. First,
as a low total power budget results in low performance
and power efficiency, it should not be allocated to run
new jobs. Instead, it can be added to boost the execution
of current jobs or reclaimed by higher level schedules.
Second, power overbudgeting wastes power without in-
creasing performance. Therefore, schedulers should avoid
budgeting excessively larger power than what applications

can consume. Third, optimal schedulers should differentiate
between applications and their demands.

3.2 Categorizing Power Allocation Scenarios
Under a given power budget, we observe that performance
differs significantly depending on the power distribution
across processors and memory. The impacts of power alloca-
tions fall into six categories. To be consistent with the afore-
mentioned simplified cross-component power coordination
problem, we explicitly denote Pcpu, Pmem , Pb = Pcpu+mem,
and α = (Pcpu, Pmem).
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Fig. 3. Categorization of power allocation scenarios. The plots of (a)
application performance and (b) actual power consumptions for different
power allocations between processors and memory modules visually
reveal six categories of power allocation scenarios.

Take the RandomAccess benchmark on the IvyBridge
system as an example, there exist six categories of power
allocation scenarios for Pb = 240Watts as follows:
I. Adequate power allocation for both CPUs and memory. The

power allocation Pmem ∈ [120, 132](Watts) in Figure 3
falls into this scenario. The power caps of both CPU and
memory exceed their maximum power demands respec-
tively. Because both components are able to operate at
their highest performance state at the same time, an appli-
cation can achieve its maximum performance determined
by its workload characteristics. Meanwhile, since power
is not a constraint and component power reflects the
workload characteristics, the actual power consumption
of each component stays constant. For the case shown
in Figure 3, it is 112 and 116 Watts on processors and
memory respectively.
The existence of Scenario I highlights several points:

(a) There exists a maximum power demand for a given
workload.
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(b) Supplying more power than the maximum demand
does not lead to a higher application performance;

(c) Increasing the power budget beyond the maximum
demand will increase the span of scenario I.

(d) When a power budget is much greater than the appli-
cation’s maximum power demand, the unused power
should be reclaimed by the system for other uses.

II Adequate memory power, lightly constrained CPU power. The
power allocation Pcpu ∈ [68, 118](Watts) or Pmem ∈
[132, 172](watts) in Figure 3 falls into this scenario,
where the power allocated to CPUs is lightly con-
strained but adequate to operate all processor cores
at a performance state. The actual CPU power closely
matches the allocated power budget. Meanwhile, the
actual DRAM power stays near the maximum value even
though DRAM receives a higher power allocation. As
CPU power budget decreases, application performance
decreases monotonously and gradually.
Scenario II is not an ideal allocation in this example with
Pb = 240 (Watts) because memory wastes its power
budget while CPU is constrained by available power.
However, scenario II provides important heuristics for
making power scheduling decisions: warrant memory
power to deliver best possible performance when the
total power budget is insufficient to maximally power up
both CPUs and DRAM.

III Adequate CPU power, constrained memory power. The power
allocation Pcpu ∈ [160, 212](Watts) or Pmem ∈ [68, 120]
(watts) in Figure 3 falls into this scenario. CPUs receive
more power budget than needed. Their actual power
stays relatively constant and is slightly smaller than
the maximum demand, regardless if more budget is
allocated. Meanwhile, DRAM receives inadequate allo-
cations, and its actual consumption is close to the budget.
In scenario III, application performance is bounded by
memory performance; increasing power allocation to
memory dramatically improves application performance.
In Figure 3, we observe that the spans of power al-
location regions for scenario II and III are both large.
However, power allocations in scenario II are more favor-
able than allocations in scenario III because application
performance is much more sensitive to the constraint on
memory power allocation.

IV Adequate memory power, seriously constrained CPU power.
The power allocation Pcpu ∈ [40, 66](Watts) in Figure 3
falls into this scenario. CPU power is significantly under-
budgeted while DRAM is over-budgeted. The application
performance drops sharply from those in Scenarios II and
III. In scenario IV, memory consumes much less power
that its allocation, mainly due to the fact that CPUs make
less frequent memory request.

V Adequate CPU power, minimum memory power. The power
allocation Pmem ∈ [−, 68](Watts) in Figure 3 falls into
this scenario. The actual CPU power is close to the max-
imum CPU power corresponding to a given workload
which is about 108 Watts.

VI Adequate memory power, minimum CPU power. The power
allocation Pmem ∈ [200, −](Watts) in Figure 3 falls
into this scenario. CPU receives its minimal or close to
minimal power allocation. It consumes a minimum hard-

ware determined power of 48 Watts if a lower budget is
allocated. Meanwhile, memory receives excessive power
budget. This scenario cannot ensure the system power
bound and often delivers the worst performance.
The total power budget affects the appearance of power

allocation categorization scenarios. As shown in Figure 4(a),
while the general patterns look similar, the number of cat-
egories and the span of each scenario vary with the total
power budget. For example, if the total power budget is
less than the sum of maximum cpu power and memory
power demands, scenario I does not appear. By further
reducing the power budget, the spans of scenario II and III
will reduce or disappear correspondingly. The disappearing
scenarios are those delivering relatively high performance
and utilizing the available power.
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Fig. 4. The patterns of performance impact of cross-component power
allocations for (a) HPCC star random access and (b) EP-DGEMM.
Experiments are conducted on the IvyBridge based system.

3.3 Under the Hood

The component power capping technologies can explain
the above categorization patterns of cross-component power
allocations as detailed in [18]. The Intel’s RAPL interface [21]
allows users to specify the power limits for the processor
package, DRAM, and other RAPL domains and then transi-
tions components to an appropriate power state to meet the
power limit. The leveraged technology and corresponding
power states include processor and memory sleep states (C-
state), clock throttling state (T-state), and processor DVFS
(P-state) [20].

When the received power budget is higher than the
maximum power demand, the processor runs at the high-
est stable P-state (typically the nominal frequency) as in
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scenario I and consumes the maximum power 1. When the
power budget is lower but still higher than the demand at
the lowest P-state, RAPL applies DVFS to adjust the pro-
cessor’s P-state to meet the power limit as in scenario II, as
experimentally confirmed in [18]. To meet further reduced
processor’s power budget, RAPL starts to use the clock
throttling mechanism to set a T-state or even a sleep state
(C-state). Consequently, reduced performance is observed as
in scenario IV. The operating system demands a minimum
power for the processor to operate as in scenario VI.

Similarly, RAPL uses memory power limiting states and
bandwidth throttling to limit DRAM’s power consump-
tion [13]. While DRAM bandwidth throttling reduces mem-
ory power proportionally, it decreases memory access rate,
resulting in a proportional decrease of application perfor-
mance shown in scenario III. Since the operating system
requires a minimum memory power for the system to
operate, a power budget lower than OS’s required minimum
memory power is disregarded, as reflected scenario VI.

3.4 Optimal Power Allocations
3.4.1 The Balance for the Upper Performance Bound
For a given power budget, the optimal cross-component
power allocation delivers the best performance among all
possible allocations. In essence, it provides a balanced in-
teraction between compute and memory access, while the
other allocations are bounded by either of them.

Figure 5 shows the allocated capacity and utilization of
compute and memory access for DGEMM and STREAM on
the IvyBridge system. The capacity Rmax of a component K
for the power budget PK is approximated with its highest
rate, i.e., when the other component is excessively powered.
For example, the compute capacity under 80 Watts is the
measured compute rate when CPU is allocated 80 Watts and
the memory is overly allocated with 100 (greater than the
known maximum consumption). With the optimal power
allocation, the utilization — the ratio of the actual rateR and
the capacity Rmax — is high, close to 100% for both compute
and memory access. In contrast, when processors are under
powered, processor capacity utilization is high but memory
capacity utilization is low, indicating that application exe-
cution is bounded by compute. Similarly, when memory is
under powered, application is bounded by memory access.

Different applications have different demands for com-
pute and memory access, and have different compute in-
tensities — the ratio of computation rate to memory band-
width on the same system. Resultantly, their optimal power
allocations differ. DGEMM is compute intensive and has a
high power demand for CPUs, requiring power allocation
highly proportional to CPU compute. In contrast, STREAM
is memory intensive, requiring power allocation highly pro-
portional to memory access.

3.4.2 Locating the Optimal Power Allocation
The optimal cross-component power allocation is specific
to the given power budget. It is located at Scenario I
given sufficient power, and usually at the intersection of

1. We don’t consider the turbo boost state as it is dynamically
controlled by hardware.
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Fig. 5. Balanced compute and memory access for a given total power
budget of 208 Watts.

TABLE 1
Optimal Allocation and Critical Component vs. Power Budget.

Pub Valid Alloc. Scenarios Optimal Allocation
Intersection Critical Comp.

large I, II, III, IV, V, VI I none
↓ II, III, IV, V, VI II III DRAM
↓ III, IV, V, VI III IV CPU
↓ IV, V, VI IV VI DRAM

small V, VI V2 VI CPU

two neighboring scenarios given smaller power budgets,
as shown in Figure 4(a). As power budget decreases, the
optimal allocation is at the intersection of Scenarios II and
III, and further moves to the intersection of Scenarios III
and IV. Table 1 summarizes the location of the optimal
allocation for varying power budgets.

From the optimal cross-component power allocation, a
shift in either direction causes performance degradation.
However, shifting in one direction degrades performance
more. For example, from the optimal power allocation
(Pcpu = 108, Pmem = 116) for the star random access
benchmark and a budget of 224 Watts, shifting 24 Watts
from DRAM to processors reduces performance by 50%,
but shifting 24 Watts from processors to DRAM reduces
performance by 10%.

We mark the critical component as the one that, if under
powered, drastically degrades the application performance.
For example, for RandomAccess on the IvyBridge system,
the critical component is DRAM for Pb = 224Watts and
CPUs for Pb = 176Watts. The existence of a critical compo-
nent suggests that a power allocation strategy ensures the
power budget for the critical component and approaches
the optimal allocation from the scenario (underlined in
Table 1) that better preserves the performance. We would
like to reiterate that very small power budgets should not
be allocated for running new jobs, due to unacceptable low
power efficiency and performance.

4 POWER ALLOCATION SCENARIOS ON GPU S

Figure 1 highlights that GPU computing is similar to
CPU computing. Figure 6 confirms these observations with
SGEMM and MiniFE applications on a Nvidia Titan XP
and Titan V card respectively. In the experiments we ad-
just SM or DRAM frequency offsets respectively through
nvidia-settings . Each data point in Figure 6 represents
a SM or DRAM frequency offset setting. On the Titan XP

2. Scenario V may not respect the cap set on DRAM if the cap is lower
than the minimum.
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card, SGEMM’s upper performance bound continues to
increase without flattening for the range of power sup-
ported by the GPU, indicating it demands more than 300
Watts. MiniFE’s upper performance bound increases until
the power cap is greater than 180 Watts. For a given power
budget, MiniFE has a greater performance variation than
SGEMM, i.e., 35% on average vs up to 25%. On the Titan V
card, SGEMM’s upper performance bound continues to in-
crease until the power cap reaches 180 Watts, while MiniFE’s
upper performance bound does not change in the power
range under study. We also observe on both cards that the
default power capping mechanism for Nvidia GPUs fails to
reach the maximum performance.
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Fig. 6. Upper performance bound vs. power cap for a Titan XP and a
Titan V GPU card respectively.

The dynamics of GPU cross-component power allocation
and categories has some unique features, due to the smaller
range of power management and the underlying power
capping mechanism shown in Figure 7. First, Only a few
categories appear in the application profiles, e.g., categories
I, III and II on Titan XP and category III on Titan V. GPU
hardware excludes categories ((IV & V & VI)) that would
deliver an unacceptable low performance, by disallowing
low power caps on SMs and memory. In addition, the largest
performance difference is only about 30% among allocations
of the same power budget. Second, unlike independent
management of processors and DRAM on the host, where
unused power budget on one component is simply wasted,
the GPU power capping automatically reclaims unused
power budget and shifts it to another component, e.g., from
DRAM to SMs. As a result, the intersections of categories
are different from those for CPU computing, and the actual
total power consumption always matches the set power cap,
unless the cap exceeds applications’ demand. Third, with
the new SM and HBM2 technologies, Titan V has a smaller
total and DRAM power range than Titan XP.

On Titan V, application performance is generally mem-
ory bounded, and increases with memory power allocation.
On Titan XP, applications present three performance pat-
terns, depending on their compute intensity.

1) Compute intensive applications like SGEMM. The
highest performance under a given power budget is

achieved by allocating the minimum power to DRAM.
The performance curves show Categories I & II. Per-
formance is largely constant (Category I) for large Pb
values or decreases (Category II) for small Pb values
as memory power allocation increases. Meanwhile, the
performance curves are dispersed and diverge. The
dynamics indicates application performance is con-
strained by SM power.

2) Memory intensive applications like Stream and miniFE.
The highest performance is achieved by allocating max-
imum power to DRAM for a given large power budget,
and by balancing between SM and DRAM otherwise.
The performance curves show Categories III & II. Per-
formance increases monotonically with memory power
allocation at the same rate if Pb is large (Category III ),
and the performance curves with different Pb’s overlap.
Performance may decrease if Pb is small (Category
II). The dynamics indicates application performance is
mainly constrained by memory power but shift to be
constrained by SM power if the total power cap is small.

3) Applications in between like Cloverleaf. The highest
performance is achieved by allocating maximum power
to DRAM for a given large power budget, and by
balancing between SM and DRAM otherwise. The per-
formance curves show Categories III & II. Performance
increases monotonically but at a small rate ifPb is large,
increases then decreases if Pb is small. The performance
curves with different power caps do not overlap, but
diverge as memory power allocation increases. The
dynamics indicates application performance requires
balanced allocation across SM and memory.

5 A HEURISTIC POWER ALLOCATION METHOD
Leveraging the categorization of scenarios and analysis of
optimal allocations, we develop a heuristic power allocation
method to the problem of cross-component coordination.
This method eliminates the need of exhaustive or fine-grain
profiling to locate the optimal power allocation for any
given power budget.

5.1 Category-Based Heuristic for CPU Computing
In Figures 3 and 4, we observe that each power allocation
category is limited by a component and thus investigate the
power values at which performance inflects. For the CPU ex-
perimental platforms, there are four critical processor power
values ( Pcpu,L i f or i = 1..4) and three critical memory
power values ( Pmem,L i f or i = 1..3). These application-
specific values define boundaries of power allocation sce-
narios and correspond to the transition points at which
RAPL switches from one power-saving mechanism to an-
other, e.g., from P-state to T-state to sleep-state. Specifically,
the seven critical power values are described as follows.
Pcpu,L 1 : the maximum processor power consumption. Pro-

cessor runs at its highest performance state (P-state).
Pcpu,L 2 : the power when the processor operates at the

lowest performance state. [Pcpu,L 2 , Pcpu,L 1 ] forms the
power range of processor P-states.

Pcpu,L 3 : the power when the processor is at the lowest
percentage of clock throttling on the system.
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Fig. 7. Performance trends as memory power allocation increases under
various total power caps on Titan XP and Titan V respectively. The mem-
ory power is estimated using memory frequency setting and empirical
power models built from experiment data on the card.

Pcpu,L 4 : the minimum power when the processor actively
executes applications. If imposed with a lower budget,
the processor still consumes Pcpu,L 4 . Pcpu,L 4 is the same
across all applications and hardware controlled.

Pmem,L 1 : the highest DRAM power when both CPUs and
DRAM run at the highest performance state to execute
the application.

Pmem,L 2 : the corresponding DRAM power when the pro-
cessor power is at Pcpu,L 3 .

Pmem,L 3 : the minimum DRAM power set by the hardware
for a running system. If DRAMs are imposed with a
lower budget, they still consume Pmem,L 3 Watts. This
minimum power is the same across all applications.

The existence of critical power levels provides two im-
portant heuristics. First, the power budget given to a com-
puter system must be greater than a threshold Pcpu,L 2 +
Pmem,L 2 to fall into category I, II or III and operate in a
productive manner. Second, given a power budget that is
above this threshold, the critical power values dictate the
set of valid power allocation scenarios and corresponding
optimal cross-component allocations.

Based on these two heuristics and previous discussions
on optimal allocation for each scenario category, we develop
a category-based power coordination COORD method as
shown in Algorithm 1. We assume dedicated execution
environments where only one job runs on the system simul-
taneously, which holds true on traditional high performance
computing systems. We consider fixed total power budgets
and distributions across components prior to a job exe-

Algorithm 1 Category-Based Heuristic Power Coordination
procedure COORD (Pb)

status ← Success
if Pb ≥ Pcpu,L 1 + Pmem,L 1 then . adequate power for both

Pcpu ← P cpu,L 1
Pmem ← P mem,L 1
status ← Hint : power surplus

else if Pb ≥ Pcpu,L 2 + Pmem,L 1 then . adequate power for one
Pmem ← P mem,L 1
Pcpu ← (P ub − Pmem )

else if Pb ≥ Pcpu,L 2 + Pmem,L 2 then . inadequate power
P dCPU ← P cpu,L 1 − Pcpu,L 2
P dmem ← P mem,L 1 − Pmem,L 2
percentcpu ← 1.0 ∗ P dCPU /(P dCPU + P dmem )
Pprop ← P b − (Pcpu,L 2 + Pmem,L 2 )
Pcpu ← P cpu,L 2 + percentcpu ∗ Pprop
Pmem ← (P b − Pcpu )

else . power budget too small
status ← W arning : budget too small!

return (Pcpu , Pmem , status)

cution. Provided offline application profiling, this method
does not incur runtime overhead, and can be integrated
into batch systems such as Slurm. In the future, we will
investigate how to adapt this algorithm to support online
dynamic power budgeting and distribution, and multi-task
and multi-tenant systems.

Essentially, COORD breaks the set of possible power
budgets into four subsets: (A) adequate budgets for both
components to operate at the highest performance state, (B)
adequate budgets only for one component to operate at the
highest performance state, and in this case we prioritize
memory power allocation as it has a greater impact on
performance, (C) neither component has adequate budget
to run at its highest performance state, and in this case
we proportionally allocate power between processors and
memory, and (D) both components must be throttled down
to satisfy the power limit; the algorithm rejects to allocate
power to run the job due to the expected poor perfor-
mance. Empirically, COORD ensures (1) the system meets
the power limits; and (2) the power allocation achieves the
best or close-to-best application performance under a given
power budget. As discussed in Section 6, the propositions
are confirmed by our experimental results.

5.2 Algorithm Adjustments for GPU Computing
Because GPU computing has a smaller range for power
allocation and the hardware settings already exclude unac-
ceptable low power budgets, COORD can be simplified and
uses fewer parameters. Particularly, only two parameters are
needed for each application:
Ptotmax : total power when no (default) cap is imposed.

This value can also be used to determine if the ap-
plication is compute intensive, e.g., a value close to
hardware maximum (300 Watts on the Titan XP GPU)
indicates compute intensive.

Ptotref : total power when memory runs at the nominal
frequency, and SM runs at the min paring frequency.

Two other parameters which are pre-obtained for the
GPU card and applicable for all applications are: Pmemmin
and Pmemmax .

The general GPU version of COORD, shown in Algo-
rithm 2, first checks excessive power budgeting and signals
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the higher level scheduler. Then it considers three cases
based on the power budget and the application’s compute
intensity: (A) for compute intensive applications, assign
minimum memory power and the remaining to SMs, (B)
for other applications, assign maximum memory power and
the remaining to SMs if Pb ≥ P tot

ref , and (C) otherwise,
assign power to memory to run it in a balanced fashion
with SMs and the remaining power to SMs. The balance
is specified with the parameter γ, which is empirically
set 0.5 in our experiments. To support cards like Titan V,
this algorithm can be further reduced to just support the
memory intensive case, and allocate maximum power to
memory and remaining to SMs.

Algorithm 2 Category-Based Heuristic for GPU Computing
procedure COORD (Pb)

status ← Success
if Pb ≥ Ptot max then

status ← Hint : power surplus (Pb − Ptot max )!
if comp. intensive app then . Compute intensive

Pmem ← P mem min
PSM ← (P b − Pmem )

else
if Pb ≥ Ptot ref then . Memory intensive

Pmem ← P mem max
PSM ← (P b − Pmem )

else . in between
PSM ← (P b − Pmem )
Pmem ← P mem min + γ(Pb − Ptot min )
PSM ← (P b − Pmem )

return (PSM , Pmem , status)

6 EXPERIMENTAL RESULTS AND DISCUSSIONS
6.1 Experimental Methodology
We experimentally evaluate the problem of cross-
component power coordination on two CPU-based server
nodes and two GPU cards described in Table 2. We dis-
able the processor’s turbo boost performance state and
hyperthreading. The GPU cards have a thermal and power
specification of 250 Watts, which is the default power cap.
Users can set a higher power cap up to 300 Watts through
nvidia-smi.

TABLE 2
CPU and GPU platforms used in experiments

Platform Processor Memory
CPU Platform I 2 Xeon 10-core IvyBridge procs 256 GB DDR3
CPU Platform II 2 Xeon 12-core Haswell procs 256 GB DDR4
GPU Platform I Nvidia Titan XP 12 GB GDDR5X
GPU Platform II Nvidia Titan V 12 GB HBM2

For CPU computing, we use 11 parallel benchmarks
listed in the top half of Table 3 including those from the HPC
Challenge Benchmark (HPCC) [25], NAS Parallel Bench-
marks (NPB) [4], and UVA STREAM. In each experiment,
we use all physical CPU cores to run one benchmark and
assign each core a MPI process or OpenMP thread. For GPU
computing, we use 6 CUDA example programs or Exascale
Computing Proxies listed in the bottom half of Table 3.

6.2 The Patterns of Power Allocation Scenarios
We first verify whether the patterns and categorizations are
universal among a wide range of parallel applications. We
apply the same profiling process to all benchmarks listed in

TABLE 3
List of Benchmarks Used in This Study

Benchmark Description and Workload Pattern
SRA Embarrassingly parallel, random memory access
STREAM Synthetic, measuring memory bandwidth
DGEMM Matrix multiplication, compute intensive
BT Block Tri-diagonal solver, compute intensive
SP Scalar Penta-diagonal solver, compute/memory
LU Lower-Upper Gauss-Seidel solver, compute/memory
EP Embarrassingly Parallel, compute intensive
IS Integer Sort, random memory access
CG Conjugate Gradient, irregular memory access
FT Discrete 3D fast Fourier Transform, compute/memory
MG Multi-Grid operation, compute/memory
DGEMM Compute intensive, CUBLAS implementation
STREAM Memory intensive, CUDA version of STREAM
CUFFT memory intensive, CUDA example
MiniFE Memory intensive, ECP proxy
Cloverleaf compute/memory, ECP proxy
HPCG Memory intensive, HPL benchmark

Table 3 with various combinations of power budgeting and
allocations on the CPU and GPU systems. The experimental
results in Figure 8 show there exist both universal patterns
and workload-specific features with regard to how applica-
tion performance, actual power, and energy efficiency vary
with different power allocations under a total budget.

Patterns Common to All Benchmarks
All benchmarks share the following common patterns.

1) There exist six categories in CPU computing, and three
categories in GPU computing, each characterizing a
unique pattern of how cross-component allocations im-
pact the achieved performance and actual power.

2) The actual system and component power consumptions
fall between an upper bound and a lower bound. An
ideal power budget would be slightly above the upper
bound to ensure a robust power coordination.

3) Coordinated cross-component power coordinations are
crucial for maximizing application performance and
effective utilization of the available power budget.

4) Small power budgets should not be accepted due to low
performance and power efficiencies.

Workload-dependent Variations
The experimental results also reveal several workload-
dependent and platform-dependent pattern variations. The
major variations include the sensitivity of application per-
formance to power allocation (e.g., the slope of the perfor-
mance plot), the range of each scenario category, the mag-
nitude of maximum power consumptions, and the optimal
power allocation points. We highlight three key findings.

First, computation and memory access patterns deter-
mine the shape of the performance-power curves. On the
IvyBridge system, memory intensive workloads like MG
demand more power budget for memory, while computing
intensive workloads like BT require more budget for proces-
sors. This finding highlights the importance of application
awareness when power is a scarce resource.

Second, the execution phases of workloads impact the
regularity of the performance-power curves in each scenario
category. Kernel benchmarks like EP-dgemm consist of a
single phase, while pseudo-applications like BT and MG
may comprise multiple memory access patterns. The less
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(f) CUFFT on Titan XP GPU

Fig. 8. Performance profiles of various applications on the three plat-
forms. While all benchmarks share similar patterns of allocation scenar-
ios, each has application-specific patterns.

regular curves of BT and MG suggest the need of adaptive
scheduling inside the application for best performance.

Third, the newer memory architecture in the Haswell
system does not reduce the power demand for the maxi-
mum performance. Meanwhile, the GPU power capping is
intelligent by excluding low power capping settings.

6.3 The Accuracy of Heuristic Power Coordination
We now evaluate the category-based heuristic power coor-
dination method COORD for CPU and GPU computing re-
spectively. We compare COORD against two counterparts:
the best found in the experimental dataset and the memory-
first strategy allocating maximum power to power. The
results are shown in Figure 9. Overall, COORD differs from
the best by less than 5% for large power caps (preferred)
and by 9.6% on average for all power caps for all CPU
benchmarks, and less than 2% for GPU benchmarks. On the
CPU system, COORD generally outperforms the memory-
first strategy proposed in [18] for small power budgets. CO-
ORD carefully distributes the budgets to balance CPUs and
memory, while the memory-first strategy conservatively
allocates power to memory and distributes the remaining to
the CPUs, aiming to avoid a larger performance degradation
if memory is under-budgeted.

Given a power budget greater than applications’ max
power demand, COORD delivers the same performance
or close to the best allocation for most of the cases. In
addition, it only allocates to components adequate powers
that are lower than those set in sweeping experiments.
Algorithm COORD could further hint the system to redirect
the budget surplus for other purposes. These results indicate

that COORD is accurate under a practical power budget.
NPB LU on the IvyBridge machine shows a data point
where the heuristic method outperforms the best among
experiments. This is due to two reasons. First, the sweeping
uses a certain power stepping and thus does not necessarily
include the distributed selected by the heuristic algorithm.
Second, there is a small performance variation, i.e., < 5%
among multiple runs for the same program.

One noteworthy observation is that COORD outper-
forms the default Nvidia GPU power capping method by
up to 33% for the applications under study. This is because
COORD is aware of applications and available power bud-
gets, while the default uses the same strategy to distribute
power between GPU SMs and global memory. Specifically,
it always runs memory at the nominal (the highest stable)
speed, no matter what is the imposed total power cap or
what application is running. Such obliviousness results in
inferior performance and power budget wasted. COORD
instead adjusts the memory power and speed according to
applications’ demands.

7 RELATED WORK

This work extends previous power-aware high performance
computing to systems with limited power budgets. Power-
aware computing adapts a component’s performance-
power state to meet the demand of workloads and reduce
power with little performance impact. A majority of existing
power-aware HPC research has been focused on effectively
using power-aware components [14, 32] or controlling soft-
ware execution by adjusting the degree of concurrency and
the number of participating cores [23]. Although power-
aware computing and power bounded computing employ
common power management technologies, the former does
not enforce a power bound.

Power budgeting and power capping have been exten-
sively exploited in commercial data center power provision-
ing [36]. Effective power budgeting technologies use power
aware components [14, 32], server consolidation [11], virtual
machine placement/migration [36], and workload schedul-
ing [5]. Recently, researchers have expanded the power
budget idea into HPC and explored various methods that
could enforce a power cap on HPC systems. These methods
fall into three categories: (1) software control of the compo-
nents’ power states, for example, applying DVFS and clock-
gating to control CPU power [6, 8, 16], or managing both
processors and memory power [9, 19, 30, 34]; (2) software
control of workload execution like throttling or increasing
the number of concurrent threads [7, 10, 26, 31]; and (3)
hardware-based power-capping capability on CPUs [12, 21]
and GPUs [3, 27, 37]. In this work, we focus on the coor-
dination of power capping on competing components for
executing single jobs within one system.

Several studies investigated the problem of optimal
power allocation between cores and uncores [35], between
CPU and memory [15, 17, 30, 33, 34], among CPU and
accelerator [3, 7, 37]. Sarood et al. [30] use an interpola-
tion method, which samples a moderate subset of power
allocation points and identifies the optimal among all pos-
sible allocation points. They show capping both CPU and
memory power could lead to a higher performance than
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Fig. 9. Comparison between COORD and the best identified from experiments on IvyBridge system and the Titan XP GPU system. The vertical
lines in the GPU figures show the value of Ptot ref .

just capping CPU power. Motivated by the fact that dif-
ferent applications have different performance behaviors
in a power-capped environment, Tiwari et al. [34] model
the performance degradation caused by reduced CPU and
DRAM power caps for various workloads represented with
a set of static and dynamic program characteristics, which
is obtained with binary code instrumentation and analysis
and the aid of a suite of analysis tools. More recently,
researchers study job co-running on integrated CPU-GPU
systems under power caps [3, 37], and performance and
power modeling of CPU, GPU, and memory frequency
scaling [7].

This work distinguishes from the state-of-the-art that
considers power as hard constraints and cross-component
power allocations in HPC in several main aspects. First,
it reveals and generalizes the categorical patterns. Such
generalization is the first of its type capturing the dynamics
of cross-component allocation and the performance impact.
Second, it reveals the imposed power cap decides the maxi-
mum achievable performance, providing insights about the
waste of excessive power budgeting. Third, it extends exist-
ing work in cross-component power coordination from CPU
computing [18, 30, 33, 34] to GPU computing and details
the similarity and differences. Fourth, it demonstrates the
validity of lightweight power coordinations on multiple
processor and memory technologies, advancing the state-of-
the-art that requires extensive profiling [30] or instrumented
detailed profiling [7, 34].

8 CONCLUSION
As HPC systems are increasingly bounded by power bud-
get, they must cope with these power bounds. In this work,
we study coordinated power allocation between proces-
sors and memory modules and its implications to power-
bounded HPC systems. Our research reveals there exist cat-
egorical patterns in the dynamics between power allocation
and application performance. These patterns can be used
to design power coordination methods that optimally coor-
dinate power across components and maximize application
performance under given power budgets.

This study leads to several insights to power-bounded
computing. First, the designated node-level power budget
must be above certain threshold to deliver desirable ap-
plication performance, and such threshold can be derived
from components’ critical power values corresponding to
hardware power limiting mechanisms. Second, power allo-
cation between components must be coordinated to maxi-
mize application performance and power efficiency. Third,
node-level power coordination is key to higher level power-
bounded scheduling by requesting and enforcing an appro-
priate power budget and returning the excessive budget to
an upper lever scheduler.

This work focuses on dedicated computing environ-
ments for single jobs. We plan to extend this study to other
heterogeneous systems such as big.LITTLE architectures
and multi-task computing environments.
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