
Slate: Enabling Workload-Aware Efficient
Multiprocessing for Modern GPGPUs

Tyler Allen, Xizhou Feng, Rong Ge
Clemson University

{tnallen, xizhouf, rge}@clemson.edu

Abstract—As GPUs now contribute the majority of computing
power for HPC and data centers, improving GPU utilization
becomes an important research problem. Sharing GPU among
multiple kernels is an effective approach but requires judicious
kernel selection and scheduling for optimal gains. In this pa-
per, we present Slate, a software-based workload-aware GPU
multiprocessing framework that enables concurrent kernels from
different processes to share GPU devices. Slate selects concurrent
kernels that have complementary resource demands at run time
to minimize interference for individual kernels and improve
GPU resource utilization. Slate adjusts the size of application
kernels on-the-fly so that kernels readily share, release, and claim
resources based on GPU status. It further controls overhead
including data transfers and synchronization. We have built a
prototype of Slate and evaluated it on a system with a NVIDIA
Titan Xp card. Our experiments show that Slate improves system
throughput by 11% on average and up to 35% at the best scenario
for the tested applications, in comparison to NVIDIA Multi-
Process Service (MPS) that uses hardware scheduling and the
leftover policy for resource sharing.

Index Terms—GPGPU, GPU Multiprocessing, GPU resource
sharing, concurrent kernels, kernel scheduling.

I. INTRODUCTION

Optimization of GPU utilization for application perfor-

mance and system throughput has become a critical open

research problem, as GPUs are a major computational resource

for today’s HPC and data centers. According to the current

TOP500 list, five of the seven top systems are accelerated with

NVIDIA GPUs [12] and Summit, the top system, draws 95%

of its computing power from GPU devices [3]. Nevertheless,

GPU computing capabilities are not efficiently utilized. The

top five GPU-accelerated systems achieve 65% of the designed

peak performance on average when running the highly opti-

mized GPU-friendly LINPACK Benchmark. GPU utilization

for real-world applications is much lower. For example, when

running the HPCG benchmark, Summit only achieves 1.5% of

its peak performance [5].

One reason for the low GPU utilization is that many kernels

cannot fully utilize the memory and compute resources on their

own all the time [16]. Kernels have various memory access and

compute profiles, and have different sizes. Memory intensive

applications that are bounded by device memory bandwidth

cannot fully utilize the computing capacity. Small kernels do

not have sufficient degrees of parallelism to occupy all the

processing units. Meanwhile, some compute intensive kernels

may use only a portion of the devices’ memory bandwidth.

Low resource utilization is common when kernels optimized

for earlier generations of architectures run on cutting-edge

devices.

Sharing GPU resources among multiple kernels with com-

plementary demands can improve GPU utilization. For exam-

ple, pairing a memory intensive application with a compute

intensive application could fully utilize both GPU memory

bandwidth and processing units. There are two sharing mech-

anisms: time slicing—switching among multiple kernels over

time, and spatial sharing—executing more than one kernels

at a time. A practical GPU sharing framework can use either

mechanism or combine them.

To enable and improve GPU resource sharing, recent

NVIDIA GPU architectures support two features: Hyper-Q and

MPS (Multi-Process Service). Hyper-Q uses multiple hard-

ware work queues to build simultaneous, hardware-managed

connections between the host and the GPU device to support

concurrent kernel launching on a single GPU [1]. Hyper-Q

requires all the work queues belong to a single CUDA context

in the same process. To bypass this hardware limitation, MPS

introduces a client-server architecture to map multiple clients’

CUDA contexts onto a single server CUDA context and then

leverages Hyper-Q to build hardware work queues for the

clients [15]. MPS uses time-slicing on early architectures

and has added spatial sharing on more recent architectures

including Pascal and Volta [14].

While MPS extends GPU resource sharing to multiple

processes, it neither assesses if the kernels interfere with

each other nor evaluates if they can optimize the system

throughput. As a result, concurrent kernels may compete for

GPU resources like memory bandwidth and cache space, and

such contention adversely hurts the performance of individual

kernels and degrades system throughput. A workload-aware

alternative is needed, instead, to maximize the system through-

put and avoid or minimize contention.

In this paper, we present Slate, a workload-aware GPU

multiprocessing framework that enables concurrent kernels

from different processes on modern GPU devices. Slate intro-

duces several novel ideas to improve GPU utilization through

efficient resource sharing.

First, Slate provides a software-based solution that enables

spatial sharing of GPU resources among different host pro-

cesses. It offers a high performance, open-source alternative

to NVIDIA MPS to improve GPU utilization and further GPU

multiprocessing research.

Second, Slate integrates workload-awareness into GPU mul-

252

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00035

tiprocessing. It selects concurrent kernels with complementary

resource demands to minimize resource contention, and uses

several techniques to facilitate kernels to share, claim and

release resources at run time.

Third, Slate scheduling is cost-effective. Scheduling over-

head is a major reason why software-based GPU multiprocess-

ing attempts fail to deliver desirable performance on real sys-

tems [16]. Slate controls the overhead by minimizing schedule-

related computation, data transfer, and synchronization.

Finally, we have implemented a Slate prototype, which

comprises Slate runtime, Slate library, and APIs, and evaluated

it on real GPU platforms. The results on a NVIDIA Titan Xp

based system show that Slate outperforms MPS by 11% for

the set of applications under study.

II. THE GPU RESOURCE SHARING PROBLEM

According to the NVIDIA’s GV100 white paper, allowing

multiple clients to share the same GPU device expedites

workload execution by seven times [14]. We can interpret this

statement in two ways. First, GPU underutilization is serious

and common. Second, GPU resource sharing is effective and

must be promoted on production systems.

The GPU underutilization can be reproduced using the

stream application on our system. Figure 1 illustrates how

global memory read performance changes with the number of

GPU SMs. Bandwidth first increases quickly and reaches the

peak with nine SMs; it does not further increase with SMs.

If we pair this kernel with a compute intensive kernel and

divide the SMs among them, we can fully utilize both mem-

ory bandwidth and computing capacities without noticeably

slowing down the execution of each kernel.

However, GPU resource sharing is non-trivial, and we face

several challenges to realize it on today’s architectures.

Kernel characterization and selection. Concurrent kernels

share multiple hardware resources including processing ele-

ments, memory bandwidth, and caches. Arbitrary kernel pair-

ing creates contention on these resources, which not only inter-

feres with the execution of individual kernels but also degrades

system throughput. Fully utilizing GPU resources requires us

to judiciously select concurrent kernels with complementary

workload characteristics. In this work, we explore methods

of workload characterization and selection, and choose those

that balance between accuracy and simplicity for runtime

employment.

Scheduling overhead. The scheduler for GPU resource shar-

ing incurs time to select concurrent kernels, allocate GPU

resources, and schedule their executions. Any considerable

cost will be pronounced because many kernels have a short

turn-around time. In this work, we use multiple techniques to

control the scheduling overhead and ensure an overall gain

from GPU resource sharing.

System support. Current GPU devices use hardware work

queues and hardware kernel scheduling without providing

flexible controls to external software. The very few vendor-

provided tools like NVIDIA MPS [15] are kept as proprietary

Fig. 1: The performance variation with the number of SMs for the
Stream benchmark with a fixed problem size of 6GB on a Titan Xp
device. Limited by memory capability, performance reaches the peak
at 9 SMs and then flattens.

code. Consequently, we have to build our own framework

Slate, which utilizes the underlying hardware scheduling.

Although both Slate and NVIDIA MPS support GPU mul-

tiprocessing, Slate distinguishes from MPS by proactively

sharing resources among kernels and embracing the concept

of workload-aware kernel scheduling.

III. WORKLOAD-AWARE KERNEL SCHEDULING

Slate provides a software-based solution for GPU multipro-

cessing and resource sharing. The Slate overview is provided

in Figure 2. Slate accepts kernels from multiple processes,

builds a queue for each process and CUDA stream, and

schedules them to disjoint SMs.

Fig. 2: The Slate methodology overview. We highlight several actions
in the method as follows: (a) CPU processes launch compute kernels
through Slate Runtime. (b) Slate Runtime (i) provides context fun-
neling to enable concurrent execution of kernels from different CPU
processes and (ii) applies kernel transformation to optimize kernel
performance and resource utilization. (c) Dispatcher dispatches the
transformed kernel, which creates a task queue and binds worker
threads to a set of SMs; worker threads retrieve tasks from the task
queue. (d) Slate Runtime selects complementary kernels to share
resource and improve system throughput. (e) Slate monitors the
system state, notifies the dispatch kernels to dynamically adjusts the
kernel sizes.

In addition to supporting concurrent kernels from multiple

GPU applications, Slate integrates several important tech-

niques to improve the GPU utilization and system perfor-

253

mance. In this section, we discuss three workload-aware kernel

scheduling techniques: kernel transformation, complementary

kernel selection, and dynamic kernel resizing.

A. Kernel Transformation

GPU computations are centered on kernels—functions com-

piled for GPU accelerators and offloaded from the host pro-

cesses to be executed by many GPU threads. Unlike CPU

threads which users have flexible controls, GPU threads are

managed by the GPU hardware. Given a kernel’s thread

blocks, the GPU hardware uses block-oriented scheduling to

dispatch the thread blocks to all the SMs, preventing resources

sharing among multiple precesses.

To overcome the limitation of GPU hardware scheduling,

Slate transforms user kernels into a format that facilitates

efficient kernel task queuing. Specifically, it takes the user

kernels and replaces the built-in CUDA variables such as

blockIdx and gridDim, and injects necessary device codes

to create an additional software layer to manage the order

and patterns how kernels are dispatched and executed on

GPU devices. The kernel transformation must preserve the

semantics of user kernels for computation and be light weight.

Fig. 3: Kernel Transformation.

1) Kernel Transformation Details: Figure 3 shows the

kernel transformation and Slate scheduling. Slate converts a

2D or 1D grid user kernel K(B, T) to a 1D grid K∗(B∗, T)
without modifying the internal structure of the thread blocks.

Here B is a 2D or 1D grid and B∗ is 1D, and T , the threads

per block, is the same in both kernels.

Slate puts the 1D thread blocks of K∗ in a queue, and

creates a set of persistent workers, each repeatedly pulling the

next group of blocks and executing them. To keep track of the

queue status, Slate uses a scheduling index slateIdx, which

begins at 0 and finishes at slateMax. Unlike GPU hardware

that uses a thread block as a scheduling unit, Slate groups

multiple user thread blocks into a task and schedules the tasks.

K and K∗ are isomorphic. Corresponding blocks are iden-

tified differently: K uses the built-in variables gridDim and

blockIdx, and K∗ introduces a variable globIdx. With the

Slate scheduling, the values of gridDim and blockIdx no

longer correspond to the user-specified grid dimensions. To

maintain the user kernel semantics, Slate replaces these built-

in variables in the user kernel K with its own corresponding

variables as shown in Figure 3.

2) Benefits of Kernel Transformation: The kernel transfor-

mation process provides several benefits.

First, it enables efficient software-based kernel scheduling,

where workers pull the tasks from a queue and execute them.

Second, because the workers process the tasks from the

queue in order, they preserve data locality and increase the

performance of typical applications.

Third, Slate can specify the size of workers and bind them

to a designated range of SMs [sm_low,sm_high]. With this

ability, Slate can partition the SMs into disjoint subsets and

enable spatial sharing among multiple kernels. The detailed

implementation of worker-SM binding will be discussed in

the following section.

3) Kernel Transformation Overhead: Kernel transformation

in previous studies incurs a large cost and is unsuitable for

runtime application [16]. In Slate, we use two techniques to

control the cost of kernel transformation so that it is negligible.

First, Slate avoids expensive modulo and division operations

when it converts grids, and keeps the inner block geometry

unchanged.

Second, Slate maintains the intra-block structure, and thus

leverages the data locality designed by the kernel developer.

B. Concurrent Kernel Selection

Slate includes a concurrent kernel selection component to

determine if an active kernel should share device resources

with another kernel. Slate makes the decision based on pro-

files of the kernels and available GPU resources. It chooses

concurrent kernels if there exists a candidate kernel with

complementary workload characteristics. Otherwise, it runs the

active kernel on the entire SMs.

In this study, we say that two kernels are complementary

if their concurrent execution has a higher system throughput

than their consecutive executions. We use average normalized

turnaround time (ANTT) to evaluate throughput. Assume that

kernels Jk and Jk+1 take Tk and Tk+1 to complete using all

the SMs respectively, and T ′k and T ′k+1 when sharing resource.

ANTT is T = (Tk + Tk+1) for the consecutive solo runs,

which is the default situation with CUDA. ANTT is T ′ =
max(T ′k, T

′
k+1) for the concurrent case if Slate or MPS is

enabled. T ′ < T indicates better throughput from concurrent

kernels.

1) The Selection Algorithm: Without loss of generality,

assume that kernel Jk−1 has just completed and released its

resource, and kernel Jk is active, as illustrated in Figure 4.

Slate examines if the next kernel Jk+1 is complementary to

Jk. If yes, Slate chooses corun (a). Otherwise, Slate examines

other kernels in the queue. Slate runs Jk solo (b) if no

complementary kernel is found.

Slate uses kernel profiles to infer at run time if two kernels

are complementary. Specifically, it records kernel profiles ob-

tained from its previous runs or offline profiling. To control the

decision cost, Slate focuses on the most impacting resources,

i.e., L2 cache, global memory and compute resource, and uses

a heuristic decision method based on demands for them.

254

Jk-1

Completed Job

Jk-1

Completed Job

JkJk+2 Jk+1Jk+3

Job Queue Running Job

JkJk+2 Jk+1Jk+3

 Job Queue Running Jobs

(b) run Jk solo

(a) run Jk+1 and Jk together

Fig. 4: The Slate scheduling decisions: (a) concurrent kernels

Jk and Jk+1 or (b) single kernel Jk.

2) Heuristic Policies: At run time, Slate refers to a heuristic

policy table in Table I to decide whether a given pair of kernel

should share a GPU. This table is derived from empirical

results.

Generally, this heuristic method categorizes applications

in two characteristics: compute intensity (C) and memory

intensity (M). It labels the intensity with three levels—low

(L), medium (M), and high (H). Slate gives a higher priority

to memory intensity over computation intensity. For example,

an application of H M is simply memory intensive, while an

application of low-memory (L M) could be L C or M C or

H C. For a given pair of kernels, the heuristic method exam-

ines the performances of corun and solo runs, and chooses the

one that delivers the higher throughput.

TABLE I: The Slate heuristic scheduling policy. The policy is “corun” if the
kernels are complementary, and “solo” otherwise.

Benchmark L C M C H C M M H M

L M
L C corun corun solo corun corun
M C corun corun solo solo corun
H C solo solo solo solo corun

M M corun solo corun solo solo
H M corun corun solo solo solo

C. Dynamic Kernel Resizing

When a concurrent kernel completes or a new kernel arrives,

the running kernel should grow or shrink instantly to claim or

release resource. Without delay, a completed kernel should

release its designated SMs, which the running kernel seam-

lessly claims. Similarly, if a new kernel arrives, the running

kernel shrinks and releases a part of its SMs. Such online

kernel resizing is necessary for true GPU multiprocessing and

optimized resource utilization.

To realize online kernel resizing, Slate dynamically adjusts

the spatial SM partition and the worker-SM binding. As

introduced earlier, Slate transforms the kernels so that it can

use a set of persistent workers to execute each user kernel

and bind them to a designated range of SMs. Slate always
sets the size of workers as the maximum number of thread

blocks that the designated SMs can support. When the running

kernel needs to grow or shrink, Slate increases or decreases its

designated range of SMs. This involves actions: terminate the

old workers and launch a new set of workers. To carry over

the kernel progress, Slate uses variable slateIdx to keep track

of the status of the user task queue. The new set of workers

begins with tasks referred by slateIdx.

IV. SYSTEM DESIGN AND IMPLEMENTATION

We set several goals in the design of Slate. First, Slate en-

ables multiprocessing and resource sharing for various GPU

applications. Second, Slate provides a GPU computing envi-

ronment where users can write GPU programs and run them as

usual. To support the described user experience, Slate provides

automatic kernel transformation, kernel profiling, concurrent

kernel selection, and resource sharing. Ultimately, Slate im-

proves system throughput without slowing down individual

application execution.

A. System Architecture

Slate is designed with a client-server structure. On the client

side is a set of user APIs along with associated library. On the

server side is a system runtime (daemon) running on the host

that responds to requests from clients and manages workload-

aware kernel scheduling. With this architecture, Slate can

funnel the contexts of kernels from different CPU processes

to a single CUDA context, necessary to enable GPU resource

sharing among different applications.

1) Slate API: The Slate API acts as a wrapper for basic

CUDA functions, which the daemon intercepts to funnel

contexts and performs kernel transformation and scheduling.

To maintain the semantics of the host-device communi-

cations, for each Slate API function, the daemon performs

some additional operations on top of the corresponding CUDA

function. For example, in the case of memory allocation, the

daemon allocates a shared buffer, passes its address back to the

client, invokes the corresponding CUDA memory allocation

call and obtains the returned GPU pointer, and records in a

hash table the mapping between the shared buffer address and

the GPU pointer. In the case of data transfer between the

host and the device, the daemon replaces the shared buffer

addresses that clients provide with the corresponding GPU

pointers, and then invokes the basic CUDA data transfer. The

kernel launch and synchronization cases are simple for which

the daemon basically performs the CUDA functions.

In comparison to CUDA, Slate’s client-server architecture

introduces an additional daemon and extra communications.

To control the cost, Slate uses multiple channels and adopts

a type-based communication strategy. It uses buffers shared

between the client and the daemon to store and transfer kernel

IO data, which can range from bytes to gigabytes in size [10],

[28]. This channel avoids extra memory footprint and data

copy, a better option for large data volumes. Another channel is

named pipe, which Slate uses to communicate API instructions

and commands with fast responses.

The Slate API is presently provided as a C++ header and

shared linkable library for user kernels. We will investigate

how Slate works for CUDA libraries with diverse compute and

memory intensities. In the least, we expect Slate can recognize

the heavily optimized implementations and run them solo.

While we have not investigated how Slate can leverage DMA,

we anticipate that it does not interfere because Slate uses the

same host-device data transfer mechanisms as CUDA.

255

2) Slate Daemon: As the server, the daemon acts as a proxy

for CUDA operations so that it funnels them under the same

context. This is necessary to enable dynamic co-running that

NVIDIA MPS also uses. One limitation is that the server

intercepts client requests and relays them, introducing cost.

As discussed earlier, Slate controls this cost using multiple

communication channels. To respond quickly to clients, the

daemon creates a session for each application process upon its

first Slate API call, and keeps the session alive until the process

completes. Each session is managed by a separate CPU thread.

More importantly, the daemon realizes workload-aware

resource sharing and kernel scheduling. We discuss those

functionalities in the following subsections and use daemon

and runtime interchangeably.

B. Slate Runtime Internals

The runtime schedules user kernels automatically and trans-

parently using several main modules including code injector,

kernel profiler, and kernel scheduler.

The daemon profiles kernels at their first time run, and

saves the profile data in the kernel profile table. The daemon

references the profile data online to decide if it should run the

kernels solo or concurrently with others.

At runtime, upon the receipt of a kernel launch from user

programs, the daemon uses the code injector module to inject

code segments, necessary to materialize kernel-SM mapping

and kernel scheduling, into the user kernel code. The daemon

then puts the transformed kernels in a queue where they wait

for the to be dispatched by the scheduler to the GPU. Triggered

by arrival and completion of kernels, the scheduler refers to

the workload selection method to decide launching a new

concurrent kernel or resizing the current running kernel.

Slate presently inserts code segments through runtime com-

pilation to provide user transparency. Specifically, provided

with a user device code from the Slate kernel launch API com-

mand, the runtime first uses a FLEX scanner to detect kernels

in the original CUDA code and inserts the Slate scheduling

and resource mapping code. It then uses the NVIDIA Runtime

Compiler (NVRTC) to load the kernel onto the device [2]. A

compiled kernel image can be further cached for later use by

the same user. Alternatively, Slate can perform code injection

statically using an OMP-like pragma method, which is less

transparent.

C. Detailed Implementation of the Slate Runtime

With code injection, Slate maps kernels to disjoint SMs

and creates separate consistent workers to iteratively execute

the kernels. To enable on-the-fly SM partition and kernel

corunning, Slate keeps track of SM availability and kernel

status. Once more SMs become available, it schedules new

kernels or resizes running kernels to run on them.

Kernel-SM Mapping. Slate maps a user kernel to a range of

SMs and ensures that the kernel only runs on these SMs. This

kernel-SM mapping is materialized with code injection, as

shown in an example in Listing 1. In this example, Slate uses

two additional kernel arguments: sm_low and sm_high

to specify the lower and upper bounds of the designated

SMs respectively. Following the injected variable declarations,

Slate injects a code segment, which identifies the thread block

leader, and assigns it to check if the provisioned SM falls

into the designated range. If not, the thread block returns.

Otherwise, it stays live to execute the kernel tasks and persists

until it finishes them or receives a signal to terminate.

Upon the completion of this code segment, the number

of live thread blocks is exactly the maximum number of

blocks that the designated SMs can simultaneously support

in-registers.

//sm_{low,high} are max/min sm id
__global__ void example(const uint sm_low,

const uint sm_high, ...) {
__shared__ uint id, valid_task;
uint slate_smid;
// block thread leader
const int leader = (threadIdx.x == 0 &&

threadIdx.y == 0 &&
threadIdx.z == 0);

if (leader) {
// block id initialization
id = 0;
// get SM id
slate_smid = get_smid();
// if SM id is in valid range
valid_task = !(slate_smid < sm_low ||

slate_smid > sm_high);
}
__syncthreads();
// entire block quits if invalid SM
if (!valid_task) {return;}
//snip

Listing 1: Kernel header modification and code segment inserted at the
beginning of the original user source. It adds arguments to indicate the range
of designated SMs. The first thread in the block verifies that the running SMs
fall in the range. If not, the entire block quits.

Kernel Scheduling. Provided with the kernel-SM mapping,

Slate transforms the kernel grid to 1-D, groups the blocks as

tasks, and has the live worker threads repeatedly pull tasks

until all tasks are complete. This scheduling is implemented

with the injected code presented in Listing 2.

By using the 1-D grid, Slate places kernel tasks in a queue

so that the live threads can execute them iteratively. The

iterations are shown as the outer do-while loop in the code

segment. Slate uses the variable id to keep track of the queue

status. It breaks from the loop if id reaches the end of the

queue or there is a retreat signal, which is triggered by the

arrival or completion of another kernel.

In each iteration, a worker block pulls from the queue a

task, which consists of a number (SLATE_ITERS ≥ 1) of

user defined blocks. This grouping reduces the number of

atomic operations on the queue. It also exploits sequential-task
optimization for regular applications and ensures that multiple

user blocks are executed in-order to improve locality. For each

user defined block, Slate marks it with an 1-D global index,

and uses this index to calculate the 1-D or 2-D index that

corresponds to the user kernel semantics. This calculated index

is used to replace the built-in variable blockIdx in the user

kernel source. The other built-in variable that Slate replaces

is gridDim. As Slate uses the same inner block geometry as

256

0© __shared__ uint3 shared_blockID;
__shared__ int iters;
uint globIdx;

1© do {
if (leader) {

// pull task atomically
2© globIdx = atomicAdd(&slateIdx, SLATE_ITERS);

// clamp iterations if last block
iters = min(SLATE_ITERS, slateMax - globIdx);
id = globIdx + SLATE_MAX;
shared_blockID.x= globIdx % gridDimm.x - 1;
shared_blockID.y = globIdx / gridDimm.x;

}
__syncthreads();
uint3 blockID = {shared_blockID.x,

shared_blockID.y, 1};
const register int local_iters = iters;
// loop over the acquired block ids in task

3© for (int slate_count = 0; slate_count < local_iters;
++slate_count) {

4© ++blockID.x;
if (blockID.x == gridDim.x) {

// roll over to next Y index
blockID.x = 0;
++blockID.y;

}
5© // ORIGINAL USER CODE, built-in variables replaced

}
// while no signal and available tasks

} while(!retreat && id < slateMax);

Listing 2: Slate Scheduling Code injected to kernel sources for 2D grids.
Workers iteratively execute tasks 1©. In each iteration, they pull a group
of blocks 2© and execute the blocks in-order 3©. After computing the
corresponding user defined block index 4©, Slate replaces with it the built-in
variables in the original user code and execute the user kernel 5©.

the user kernel, it is lighter-weight than [16], which requires

extra high-cost calculations to obtain the thread indices.

Dynamic Kernel Resizing. To optimize resource utilization,

Slate dynamically adjusts the spatial SM partition and kernel-

SM binding when new concurrent kernels arrive and running

kernels complete. In the case of kernel arrival, Slate releases

a part of the designated SMs of the current running kernel

and reduces its SM range. In the case of kernel completion,

Slate assigns the newly available SMs to the current running

kernel and increase its SM range. This dynamic spatial sharing

requires that kernels are able to grow and shrink online.

Slate dynamically resizes kernels using a special dispatch
kernel, which packages together the user kernel and its des-

ignated SM range. To launch a user kernel, Slate instead

launches a dispatch kernel, which in turn launches the main

user kernel to its designated SMs and persists through its entire

execution. Should the kernel-SM binding be adjusted before

the user kernel tasks complete, the dispatch kernel terminates

the previous launched user kernel and re-launches it to the

adjusted SM range.

The dispatch kernel keeps track of user kernel progress and

carries it over in re-launches. This is done through variable

slateIdx and kernel (re-)launches in a loop as shown in

listing 3. slateIdx’s value is zero before the initial launch

but increases as kernel execution progresses. In the kernel re-

launched to the adjusted SM range, its updated value points

to the beginning of the remaining tasks.

With the dispatch kernel, threads now have three exit

conditions. (1) They run on an undesignated SM. In this

case, they quit as described in Listing 1. (2) They run on the

designated SMs and execute the entire user kernel tasks. In

this case, they are workers that are launched once and persist

through. (3) They run on the designated SMs and execute a

portion of the user kernel tasks. In this case, they are workers

but either terminated early or launched late when the available

resource changes.

extern "C" __global__
void exampleDispatcher(volatile uint* start_sm,

volatile uint* end_sm, ...) {
cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
// global scheduling change flag
retreat = 0;
// global task queue
slateIdx = 0;
do {

// launches with sm arguments and user arguments
example<<<grid, block, SHARED_MEM,

s>>>(*start_sm, *end_sm, ...);
cudaDeviceSynchronize();
retreat = 0;

// if job is incomplete, start over
} while (slateIdx < slateMax);
cudaStreamDestroy(s);}

Listing 3: Dispatch Kernel. The dispatch kernel, corresponding to the
example code in listing 1, launches the user kernel to a designated range
of SMs and re-launches to adjusted ranges if needed.

V. RESULTS AND EVALUATION

In this section we present the performance of Slate for

various applications on a real GPU accelerated system. The

system consists of an Intel Xeon E5-2670 CPU with 20

physical cores, 64GB DDR3 memory, and an NVIDIA Titan

Xp card, which has 30 SMs of the GP102 Pascal GPU

architecture and 12 GB DGGRX5 global memory. By default,

the Pascal GPU architecture combines the functionality of the

L1 and texture caches into a unified L1/Texture cache. The

system runs Fedora 26 OS and CUDA toolkit 9.1.

A. Evaluation Methodology

TABLE II: Benchmarks and their profiles. All profile data are acquired using
the nvprof tool and its event collection [13] when the original programs
run solo with CUDA on the system. Memory bandwidth is the sum of the
global load and global store bandwidth as reported by nvprof. FLOPS are
reported as the total number of single-precision floating point operations over
the kernel execution time.

Benchmark
Compute Memory

GFLOP/s
Mem. BW

Intensity Intensity (GB/s)
BlackScholes (BS) Med Med 161.3 401.49
Gaussian (GS) Low Med 19.6 340.9
SGEMM (MM) High Med 1,525 403.5
QuasiRandom

Low Low 4.2 71.6
Generator (RG)
Transpose (TR) Low High 0.0 568.6

1) Applications: The applications, presented in Table II,

are from the NVIDIA CUDA 8.0 samples and the Rodinia

benchmark suite [4]. With their diverse resource requirements

and workload characteristics, they can form pairs that are

complementary or interfering. For each benchmark, we keep

its original version and also create a modified version that

works with the Slate API and runtime.

257

2) Evaluation Metrics: The ultimate performance metrics

we use in evaluation include: application execution time, ker-

nel execution time, and normalized execution time if multiple

applications concurrently run on the system. We collect these

data when the applications run solo on all SMs and run

concurrently in different pairs. To illustrate why execution

time differ with scheduling methods, we also present lower

level performance data including compute rate in FLOPS and

memory bandwidth.

These performance metrics are used to evaluate and com-

pare three scheduling methods: vanilla CUDA, MPS, and

Slate. Vanilla CUDA uses time slicing, if there are multiple ac-

tive kernels, and allocates all SM resources to one and switches

to another the next time. MPS uses the leftover policy, which,

for our applications, only allows concurrent kernels when there

are SMs available near the end of a prior kernel’s execution.

Slate uses spatial sharing, but it selects complementary kernels

for optimal resource utilization. Slate requires the compatible

version that invokes the Slate API, while the others work with

the original version of the applications.

3) Data Collection: To ensure that timing can reliably

reflect performance, the timed programs and code segments

must run sufficiently long. To meet this requirement for short

running programs, researchers typically repeat them in a loop

and time the loop. We adopt this method in our evaluation.

Specifically, for each application, we first select a proper

problem size that is large to reach its highest performance

when the original version runs solo with CUDA. We then loop

the kernels for a number of repetitions such that the loop takes

∼30 seconds to finish. Lastly, we apply the same number of

repetitions to the Slate compatible version. All timing data that

we report in this section are for the looped kernel execution.

We use the nvprof tool and its event collection [13] to

collect other metrics including IPC, cache accesses, floating

point operations, and memory accesses1. This collection is

non-intrusive to application execution.

B. Single Application Solo Run

We first present solo execution performances with Slate,

CUDA, and MPS. Solo execution is the base case and common

in real world when there is only one application on the system.

Solo performance evaluation demonstrates the overhead of

these systems. Here we focus on kernel execution time, which

excludes the cost of code injection and runtime compilation.

Kernel time can highlight the benefits of Slate’s software-based

kernel scheduling.

Based on our experiment data, Slate outperforms vanilla

CUDA with a noticeable margin for all but one kernel.

Slate performs the best with a 28% gain for Gaussian (GS),

which has fairly intensive, regular memory accesses and less

intensive arithmetic operations.

For solo runs, it is Slate’s basic software-based scheduling

that leads to the performance improvement, for its resource

1The corresponding metrics include l2 read/write throughput,
gld throughput, gst throughput, flop count sp, flop count dp

sharing and dynamic sizing do not take action. The basic

scheduling creates a number of worker blocks that the SMs

can maximally support simultaneously. This number is much

smaller than what users have specified, and thus reduces the

thread setup time. In addition, it schedules tasks in-order from

a queue, and the tasks are coarser grained than blocks that

hardware scheduler uses. This task scheduling has two main

advantages. First, it leverages data locality in user kernels

thank to the ordered block execution. Second, it reduces the

number of synchronization in scheduling. We set the default

task size as 10 blocks.

With the default task size, Slate under performs for BS

for 5% due to load imbalance between workers. However,

Slate outperforms CUDA for BS by 2% if the task size is

set at 1.

TABLE III: Detailed performance metrics of the Gaussian Elimination (GS)
benchmark. Slate improves L1 performance and leverages the regular access
patterns of Gaussian, and reduces memory throttles.

Metric CUDA Slate Δ%
IPC 0.36 0.47 +30
Mem. Access BW (GB/s) 287 396 +38
% Stalls: Mem Throttle 26.1% 0% −26.1
Execution Time (s) 24.7 18.9 +28

To illustrate the performance improvement at lower hard-

ware level, we further compare how performance events differ

with scheduling. Here we use GS as the example. Table III

presents its hardware events and metrics under the CUDA

runtime and Slate respectively. Using Slate scheduling, GS

achieves higher cache hit rate, memory bandwidth, and IPC,

confirming that Slate’s basic scheduling leads to better data

locality and smaller thread setup cost. Note that the IPC

improvement is slightly larger than the kernel time reduction,

which complies with the fact that the Slate version kernel has

additionally injected instructions.

C. Concurrent Kernels and Resource Sharing

We now evaluate the scenario where two applications run

on the system. We run all possible pairs from the applications

with MPS and Slate, either of which transparently decides it

should run the kernels consecutively or concurrently. Here we

report the normalized kernel execution time to focus on the

utilization of the GPU resource.

Experimental results indicate that Slate performs signifi-

cantly better than MPS for some pairs and slightly better

for others. For the former cases, Slate runs the kernels

concurrently because it identifies they are complementary.

Take the RG-BS pair as an example. RG is of low compute

and memory intensity, unable to fully utilize GPU’s capacity

in processing and memory data transfer. Meanwhile, BS is

relatively compute and memory intensive. In contrast, with the

leftover policy, MPS basically runs these kernels consecutively

because the large number of blocks and threads that are created

to hide data access latency prevents spatial sharing. For this

RG-BS pair, Slate achieves a 30.55% higher throughput than

MPS. For the other pairs, Slate runs them solo consecutively

as MPS does, but outperforms MPS by 8% on average. Such

258

throughput improvement mainly comes from Slate’s software-

based scheduling, as discussed in section V-B.

TABLE IV: The performance of the BS-RG pair. Compared to MPS, Slate in-
creases bandwidth and IPC.

Metric MPS Slate Δ%
Global/L2 Throughput (GB/s) 241 250 +3.84
Load/Store Executed (million) 151 140 −9
Instructions Per Cycle 0.94 1.61 +71.28
Throughput Gain from Slate 30.55%

For the BS-RG pairing, Slate greatly improves memory

access throughput and execution rate on the device, thank to

the kernel-SM mapping and spatial sharing. Slate achieves a

71.28% higher IPC than MPS, indicating that it effectively

hides the data access latency and better utilizes the processing

units, as shown in Table IV.

D. Slate Overhead Evaluation

Here we evaluate the overhead of Slate to provide an

comprehensive analysis. Slate introduces extra operations that

incur time cost. These operations are summarized in Table V.

Some are inside the application execution but outside the

kernel execution, some are inside in the kernel execution.

Because Slate collects the kernel profiles at kernels’ first

time runs and saves the profiles in a table, kernel profiling is

considered offline. Slate references the table online and this

lookup cost is negligible and included in the kernel execution.

As discussed earlier, the profiling using nvprof is non-

intrusive.

TABLE V: Slate introduced operations and their scope.

Scope Operation

Inside kernel exec
Exec of injected instructions
Atomic ops on the task queue

Outside kernel exec
Dynamic code injection & compilation
Client-daemon communication

Offline Kernel profiling to build lookup table

1) Cost inside Kernel Execution: Even though Slate incurs

some extra costs in the kernel execution, it still outperforms

vanilla CUDA and MPS, as we see in the discussions of

solo and concurrent kernel execution. Nevertheless, here we

analyze them to shed light on necessary expenses in Slate and

potential optimizations. Because these costs cannot be quan-

tified in isolation, we try to provide qualitative estimations.

The cost is due to the code segments inserted into the user

kernels in Listings 1 and 2. There are two kinds of injected

instructions. The first is those that every thread executes, and

the second is those atomic operations for task scheduling and

synchronization, which are serial and limit the performance

gain from the massive parallelism on CUDA devices.

We use the BlackScholes (BS) kernel to illustrate the

overhead. BS has a predictable behavior, which executes 157.5

million instructions per kernel launch for a problem size of

N = 40 million. The Slate version generates about 4 million

or 3% more instructions on average.

Slate uses atomic operations to manage the task queue. To

reduce the cost of synchronization, Slate schedules 10 blocks

(1 task) at a time by default. We show in Figure 5 that this

granularity improves kernel execution time. GS is the example

for this case. Its kernel time almost halves with the task size

of 10. Nevertheless, a very large value may cause workload

imbalance among the workers. For example, the task size of

10 is worse than the task size of 1 for BS.

Fig. 5: Effects of task size on kernel execution time with Slate.

2) Overhead outside Kernel Execution: Slate also intro-

duces costs that are outside the kernel execution but inside

application execution. It takes additional time to insert code

segments to user kernels and compile them, and handle the

client-daemon communications.

Slate’s overhead can be quantitatively analyzed from Fig-

ure 6. To collect the data, we run single applications with

different schedulers, and time their application and kernel ex-

ecutions. With Slate, we further time the kernel code injection

and dynamic compilation, and communications. In the worst

case, Slate has the same application execution time as CUDA

and MPS. In the best case of GS, Slate outperforms them by

28%. Note that MPS generally has a slightly larger application

time than CUDA. This is because MPS uses an intermediate

daemon in its design.

On average, Slate takes 4% of the application execution

time to handle the client-daemon communications, and 1.5% to

inject codes and compile the kernels. The communication cost

is non-negligible, which Slate must pay to funnel the contexts

from multiple processes due to the lack of GPU hardware

interface.

Fig. 6: Application solo execution time with CUDA, MPS and Slate. The
measured application time is the full bar, and the measured kernel time is the
bottom bar. Their difference is the host time, which covers application setup,
CUDA basic functions, and data transfers. For Slate, we further isolate the
time of communication, and code injections and dynamic compilation.

E. Overall Performance with GPU Multiprocessing

Lastly we present the system throughput for multiple pro-

cesses. We run all possible 15 pairings of the applications

and measure the normalized application execution time with

259

Fig. 7: Slate outperforms the CUDA runtime for all application pairings, and outperforms MPS for all but the MM-BS pairing.

vanilla CUDA, MPS and Slate respectively. The results are

shown in Figure 7. The vanilla CUDA provides the base for

comparisons. MPS performs about 6% better than CUDA.

MPS cannot effectively corun the large kernels under study;

the kernels run consecutively for most of the time. Overall,

Slate outperforms the vanilla CUDA on all the pairings, and

MPS on all but one pairing. On average, Slate improves the

throughput by 11% over MPS, and 18% over CUDA. In the

best case of the RG-GS pairing, Slate delivers a 35% faster

application execution than MPS. The MM-BS pairing is an

exception, for which Slate under performs by 2% than MPS

due to load imbalance for BS with the default task size.

Two techniques in Slate contribute most of the performance

gain. One is the workload-aware concurrent kernel execution.

Slate concurrently runs RG with all the other kernels. Of

these pairings, BS-RG and RG-GS have the highest throughput

improvement, because RG is neither memory nor compute

intensive, complementing well with BS and GS that are fairly

memory intensive. The pairings of MM-RG and RG-TR have

a smaller gain because MM is highly compute intensive and

TR is highly memory intensive. The other contributor is the

basic software-based scheduling. For all pairings for which

Slate gains less than 10%, Slate runs the kernels consec-

utively. One special case is GS-GS, for which Slate gains

24% throughput with consecutive solo runs. Slate significantly

improves GS’s data locality and memory access performance

with the in-order block execution.

These results provide compelling evidence that there is

large room for CUDA scheduling optimization, and software-

enabled scheduling can effectively overcome the hardware

limitations to a great extent.

VI. RELATED WORK

GPU scheduling and concurrent kernels have been studied

in several existing bodies of work. These techniques usually

take one of three forms: (1) MPS-like that allows applications

to run together online without user intervention and explicit

resource management, (2) static kernel merging that combines

two kernels into a single process at compilation time directly

or indirectly, and (3) hardware modification concepts that are

evaluated with simulation.

As the proprietary solution with its left-over policy, MPS

provides no support for other scheduling policies [15]. To

circumvent this limitation, a similar attempt, Mystic, relies on

an MPS-like context funneling system [22]. Mystic enables

concurrent kernels but does not make scheduling decisions.

Existing software techniques consider two applications at

or before compile-time, and many rely on persistent threads

to control GPU resources [9]. Gregg et al. developed Ker-
nelMerge, an OpenCL runtime wrapper that interacts with

its own scheduling algorithm [8]. Free Launch used compiler

techniques to statically combine a kernel with child kernels [6].

Wang et al. developed Kernel Fusion, a source-to-source com-

piler that can combine certain kernels for specific archetypes,

such as map or reduce functions [23]. Wu et al. devised SM-

Centric program transformations [26] that statically map jobs

to GPU SMs in program source codes. By identifying co-

runnable applications and combining them in a single program,

SM-centric approach can materialize spatial sharing of the

SMs and job co-running. Distinct from this work, Slate enables

concurrent kernels from arbitrary applications at runtime and

integrates workload-awareness into its scheduling decisions.

Hardware modifications have been proposed to introduce

different scheduling strategies at the lowest level. Pai et

al. proposed to shape CUDA grids with persistent threads

[16] to allow concurrent execution of CUDA applications

and finite resource control. Similarly, the concepts of spatial

partitioning and persistent threads were simulated [16]–[18],

[25], [27] or modeled [20], many of which required hardware-

enabled kernel preemption [21] that is not yet available on

modern cards. Simulations were also performed for process-

in-memory capabilities on GPUs [19]. Different from this

work, Slate enables effective concurrent kernels on today’s

hardware architectures. Slate supports the hardware-assisted

kernel selection presented in [24], [29].

Concurrent kernels have been proposed for embedded sys-

260

tems. Effisha used software transformation techniques to pre-

empt kernels [7] at the cost of kernel progress. Lee et al. de-

veloped a runtime application framework for GPU-based em-

bedded systems exclusively for event-driven applications [11].

Their methodology assumed zero latency between host and

GPU, unrealistic on real systems.

VII. CONCLUSION

This paper presents the methodology, design, and evaluation

of Slate, a workload-aware, cost-effective kernel scheduling

and multiprocessing framework for modern GPUs. Slate ad-

dresses the issue of inefficient utilization of modern GPUs with

advanced kernel scheduling and resource sharing. Meanwhile,

Slate promotes workload-aware runtime design and introduces

several techniques to make it practical on real systems.

Using Slate, multiple applications can share GPU resources

based on their workload characteristics, mutual interference,

and system utilization status. Our prototype Slate framework

has shown up to 35% and an average of 11% throughput

improvement over the tested application pairs in comparison

with MPS. More importantly, as a software-based solution,

Slate works on most GPU systems and can be continuously

improved. Further, Slate is open-source and provides a plat-

form for future GPU multiprocessing research.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. National Science

Foundation under Grants CCF-1551511 and CNS-1551262.

We thank NVIDIA for their donation of the Titan Xp used

for this research.

REFERENCES

[1] Gk110 whitepaper, 2014. https://www.nvidia.com/content/PDF/kepler/
NVIDIA-kepler-GK110-architecture-whitepaper.pdf.

[2] NVRTC - CUDA Runtime Compilation User Guide. Technical report,
NVIDIA, 2016. http://docs.nvidia.com/cuda/pdf/NVRTC User Guide.
pdf.

[3] I. Buck. Reaching the Summit: Accelerated computing powering world’s
fastest supercomputer, 2018. https://blogs.nvidia.com/blog/2018/06/08/
worlds-fastest-exascale-ai-supercomputer-summit/.

[4] S. Che, J. W. Sheaffer, M. Boyer, et al. A characterization of the rodinia
benchmark suite with comparison to contemporary cmp workloads.
In Proceedings of the IEEE International Symposium on Workload
Characterization, IISWC ’10. IEEE Computer Society, 2010.

[5] C. Chen, Y. Du, H. Jiang, K. Zuo, and C. Yang. Hpcg: Preliminary
evaluation and optimization on tianhe-2 cpu-only nodes, Oct 2014.

[6] G. Chen and X. Shen. Free launch: Optimizing gpu dynamic kernel
launches through thread reuse. In Proceedings of the 48th International
Symposium on Microarchitecture, MICRO-48, pages 407–419, New
York, NY, USA, 2015. ACM.

[7] G. Chen, Y. Zhao, X. Shen, and H. Zhou. Effisha: A software framework
for enabling effficient preemptive scheduling of gpu. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’17, pages 3–16, New York, NY, USA,
2017. ACM.

[8] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron. Fine-grained resource
sharing for concurrent gpgpu kernels. In Presented as part of the 4th
USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA, 2012.

[9] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads
style gpu programming for gpgpu workloads. In Innovative Parallel
Computing (InPar), 2012, pages 1–14. IEEE, 2012.

[10] M. Hassaan and I. Elghandour. A real-time big data analysis framework
on a cpu/gpu heterogeneous cluster: A meteorological application case
study. BDCAT ’16, New York, NY, USA, 2016.

[11] H. Lee and M. A. A. Faruque. Run-time scheduling framework for
event-driven applications on a gpu-based embedded system. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(12):1956–1967, 2016.

[12] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. Top500
list - june 2018, 2018.

[13] NVIDIA. CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/
profiler-users-guide/index.html#nvprof-overview, 2010.

[14] NVIDIA. GV100 CUDA hardware and software architectural ad-
vances, 2017. https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[15] NVIDIA. Multi-process service, 2018. https://docs.nvidia.com/deploy/
pdf/CUDA\ Multi\ Process\ Service\ Overview.pdf.

[16] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu
concurrency with elastic kernels. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 407–418, New
York, NY, USA, 2013. ACM.

[17] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative preemption
for multitasking on a shared gpu. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 593–606, New
York, NY, USA, 2015. ACM.

[18] J. J. K. Park, Y. Park, and S. Mahlke. Dynamic resource management
for efficient utilization of multitasking gpus. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’17, pages
527–540, New York, NY, USA, 2017. ACM.

[19] A. Pattnaik, X. Tang, et al. Scheduling techniques for gpu architectures
with processing-in-memory capabilities. In Proceedings of the 2016
International Conference on Parallel Architectures and Compilation,
PACT ’16, pages 31–44, New York, NY, USA, 2016. ACM.

[20] T. Sorensen, H. Evrard, and A. F. Donaldson. Cooperative kernels:
Gpu multitasking for blocking algorithms. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, pages 431–441, New York, NY, USA, 2017. ACM.

[21] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero.
Enabling preemptive multiprogramming on gpus. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages
193–204, June 2014.

[22] Y. Ukidave, X. Li, and D. Kaeli. Mystic: Predictive scheduling for gpu
based cloud servers using machine learning. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2016.

[23] G. Wang, Y. Lin, and W. Yi. Kernel fusion: An effective method for
better power efficiency on multithreaded gpu. In 2010 IEEE/ACM Int’l
Conference on Green Computing and Communications Int’l Conference
on Cyber, Physical and Social Computing, pages 344–350, Dec 2010.

[24] H. Wang, F. Luo, M. Ibrahim, and et al. Efficient and fair multi-
programming in gpus via effective bandwidth management. In 2018
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2018.

[25] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo.
Simultaneous multikernel gpu: Multi-tasking throughput processors via
fine-grained sharing. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 358–369, March
2016.

[26] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. Enabling and
exploiting flexible task assignment on gpu through sm-centric program
transformations. In Proceedings of the 29th ACM on International
Conference on Supercomputing, ICS ’15, pages 119–130, New York,
NY, USA, 2015. ACM.

[27] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. Warped-slicer:
Efficient intra-sm slicing through dynamic resource partitioning for gpu
multiprogramming. In Proceedings of the 43rd International Symposium
on Computer Architecture, ISCA ’16, 2016.

[28] J. Zhang, S. You, and L. Gruenwald. Large-scale spatial data processing
on gpus and gpu-accelerated clusters. SIGSPATIAL Special, 6(3):27–34,
Apr. 2015.

[29] X. Zhao, Z. Wang, and L. Eeckhout. Classification-driven search for
effective sm partitioning in multitasking gpus. In Proceedings of the
2018 International Conference on Supercomputing, ICS ’18, pages 65–
75, New York, NY, USA, 2018. ACM.

261

View publication statsView publication stats

https://www.researchgate.net/publication/333556538

