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ABSTRACT

The abstraction of a shared memory space over separate CPU and

GPUmemory domains has eased the burden of portability for many

HPC codebases. However, users pay for the ease of use provided

by systems-managed memory space with a moderate-to-high per-

formance overhead. NVIDIA Unified Virtual Memory (UVM) is

presently the primary real-world implementation of such abstrac-

tion and offers a functionally equivalent testbed for a novel in-depth

performance study for both UVM and future Linux Heterogeneous

Memory Management (HMM) compatible systems. The continued

advocation for UVM and HMM motivates the improvement of the

underlying system. We focus on a UVM-based system and investi-

gate the root causes of the UVM overhead, which is a non-trivial

task due to the complex interactions of multiple hardware and

software constituents and the requirement of targeted analysis

methodology.

In this paper, we take a deep dive into the UVM system archi-

tecture and the internal behaviors of page fault generation and

servicing. We reveal specific GPU hardware limitations using tar-

geted benchmarks to uncover driver functionality as a real-time

systemwhen processing the resultant workload.We further provide

a quantitative evaluation of fault handling for various applications

under different scenarios, including prefetching and oversubscrip-

tion. We find that the driver workload is dependent on the interac-

tions among application access patterns, GPU hardware constraints,

and Host OS components. We determine that the cost of host OS

components is significant and present across implementations, war-

ranting close attention. This study serves as a proxy for future

shared memory systems such as those that interface with HMM.
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1 INTRODUCTION

Graphics Processing Units (GPUs) have become a computational

mainstay in modern HPC systems and are paving the way for other

accelerators into the HPC space. Natively, discrete GPUs have sep-

arate physical memory traditionally programmed through API and

managed by device drivers. Multiple technologies that ease the bur-

den of programming and increase codebase portability with these

accelerators by abstracting the complexity of separate CPU and

GPU physical memory domains are under ongoing development.

Heterogeneous Memory Management (HMM) and NVIDIA Unified

Virtual Memory (UVM) are two such independent yet potentially

collaborative efforts. These technologies integrate device memory

domains into the OS virtual memory system and transparently

migrate pages across devices. HMM is a Linux kernel feature that

provides a generic interface for heterogeneous memory manage-

ment to vendor- and device-specific drivers on commodity sys-

tems [11, 20]. NVIDIA UVM presently offers an all-in-one approach

combining paging and device drivers for NVIDIA GPUs. It can also

integrate with the HMM interface [33]. As of today, NVIDIA UVM

alone has been prolific, adopted by the US Department of Energy

and in common HPC frameworks such as Raja [6], Kokkos [8], and

Trilinos [19].

As noted by prior studies, transparent paging and migration

come with heavy performance costs [2, 18, 21ś23, 37]. Figure 1

shows that the access latency generally increases one or more

orders of magnitude compared to explicit direct management by

programmers. While such costs may be acceptable for applications

computing in-core on GPU memory, high-performance systems

suffer inefficient utilization as a consequence. Further, the out-of-

core capability comes at a much greater cost, largely prohibitive

for most applications. Prefetching mitigates but cannot overcome

all of the cost and could prohibitively increase it for some memory-

oversubscribed workloads [2, 14, 16, 22, 36, 38].

Understanding the overhead sources in transparent paging and

migration is essential, especially as the cost of delegating manage-

ment to the OS through HMMwill be imposed on any system using

the HMM interface. HMM may become the de-facto technology

with the ongoing advocates and development efforts. However,

HMM is not yet well supported on commodity systems. In this

work, we focus on the NVIDIA UVM technology. As we reason

in Section 2, UVM offers a functionally equivalent testbed for a

novel low-level performance study for both UVM and future HMM-

compatible systems. Using UVM, we can identify the root sources

of performance concerns and attribute them to their roles in HMM-

based implementations.

In this work, we take a deep dive into the UVM system archi-

tecture and the internal behaviors of page fault generation and
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https://www.acm.org/publications/policies/artifact-review-and-badging-current
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Figure 1: Access latency with abstracted unified space in-

creases by one or more orders of magnitude over explicit

direct management.

servicing. We perform extensive analyses on the UVM driver work-

load’s basic units: page fault batches or groups of GPU-generated

page faults. We instrument the nvidia-uvm driver to collect meta-

data containing targeted high-resolution timers and counters for

specific batch events, routines, and page fault arrival. Through

extensive experimentation and quantitative analyses, we obtain in-

sights into where the UVM costs originate and where performance

optimization or design reconsiderations are applicable for UVM,

HMM, and future vendor-specific HMM systems.

Our work examines the real-time functionality of the system

on real hardware. We provide a deep understanding of the interac-

tion between CPU and GPU with UVM and the costs of different

functionalities. In particular, we make the following contributions:

• We conduct an in-depth study of GPU page fault generation and

how UVM aggregates faults into fault batches - the core UVM

work unit - to understand the UVM workload better.

• We take a closer look at how UVM serves page faults within a

batch through the page fault handling path, offering perspective

and rationale behind design decisions and constraints.

• We analyze UVM as an example of future HMM systems, isolating

performance considerations to vendor-specific and common code

between all implementations and discussing improvements and

considerations for different cases.

• While this work focuses on single GPUs, it serves as a base and

foundation for studying the interactions among multiple devices

on the same systems, which are the standard building blocks of

computer clusters.

2 UVM BACKGROUND AND RELATED WORK

NVIDIA UVM has the same functional philosophy as the likely fu-

ture industry standard, HMMÐ Linux-like virtual memory through

paging, where page faults trigger data migration between the host

memory and accelerators [11, 20]. From the programmer’s perspec-

tive, HMM is preferable as it allows the same memory management

functions as for the CPUs, whereas UVM requires special memory

allocation functions to achieve the same result. However, HMM re-

quires backend device-specific solutions from vendors [11, 20]. The

NVIDIA UVM driver is among the first backend solutions to

interface withHMM.However, to the best of our knowledge,

the full integration for x86 systems is not available yet [33].

Figure 2: The UVM architecture. The UVM driver resides on

the host and manages the fault buffer on the device.

NVIDIA UVM is currently the primary real-world implementation

of transparent paging and migration across memory domains. Thus

we focus on UVM but draw insights applicable to HMM.

In this section, we overview the UVM system architecture and

functionality. Also, we note where these systems intersect and

overlap with HMM support.

2.1 The UVM Architecture

The UVM architecture, illustrated in Figure 2, is a client-server

architecture between one or more software clients (user-level GPU

or host code) and the server (host driver) servicing page faults for

all clients. The UVM driver on the host is an open source driver with

dependencies on the proprietary nvidia driver/resource manager

and the host OS for memory management. This driver serves as

a runtime fault servicing engine and the memory manager for

managed memory allocations.

Any active thread on the GPU can trigger a page fault. The

page fault is recognized and handled by the hardware thread’s

corresponding µTLB [29]. The thread treats this scenario as any

other outstanding memory request and may continue executing

instructions not blocked by a memory dependency. Meanwhile, the

fault propagates to the GPU memory management unit (GMMU),

which sends a hardware interrupt to the host. The GMMU writes

the corresponding fault information into the GPU Fault Buffer. The

fault buffer acts as a circular array, configured and managed by the

UVM driver [29]. The nvidia-uvm driver fetches the fault infor-

mation, caches it on the host, and services the faults through page

processing and migration.

The GPU exposes two functionalities to the host via the GPU

command push-buffer Ð host-to-GPU memory copy and fault re-

play. As part of the fault servicing process, the driver instructs

the GPU to copy pages into its memory, generally using high-

performance hardware “copy engines.ž Once the GPU’s page tables

are updated and the data is successfully migrated, the driver issues

a fault replay [39], which clears the waiting status of µTLB, causing

them to “replayž the prior miss.

2.2 Fault Batching and Handling

The nvidia-uvm driver groups outstanding faults into batches in

the host-side cache. Fault delivery to the host requires two steps:

first, the GPU sends an interrupt over the interconnect to alert the

host UVM driver of a page fault, and second, the host retrieves the
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complete fault information from the GPU Fault Buffer. The interrupt

wakes up a worker thread to begin fault servicing if none are awake.

UVM uses batching as an optimization as it allows the driver to

ignore most interrupts. The default fault retrieval policy is to read

faults until the batch size limit is reached or no faults remain in

the buffer. Batches contain up to a maximum size of 256 faults.

The worker thread tries to service another after one batch and

sleeps if it finds no new faults. For comparison, device drivers are

still responsible for these actions in HMM implementations. Fault

batching and fault handling policies are the driver’s independent

decisions.

For compatibility with the host OS and future HMM implemen-

tations, UVM adopts the host OS’s page size for migration and

tracking: 4KB pages for x86 systems and 64KB pages for Power9

systems. UVM has additional internal abstraction for management

and performance considerations. For x86, pages are upgraded from

4KB to 64KB within the UVM runtime as a component of prefetching,

emulating the 64KB Power9 page size. Additionally, the driver splits

all memory allocations into 2MB logical Virtual Address Blocks

(VABlocks). These VABlocks serve as logical boundaries; the driver

processes all batch faults within a single VABlock together, and each

VABlock within a batch requires a distinct processing step. UVM

also tracks all physical GPU memory allocations from the nvidia

resource manager. If eviction is required, UVM evicts allocations at

the VABlock granularity.

2.3 Related Work

Prior work is primarily in three categories: (1) high-level analysis of

UVM at the application level and attempts in optimizing UVM per-

formance for specific applications or problem spaces, (2) alterations

to hardware or migration of software functionality into hardware

via simulation, and (3) lower-level analysis of UVM functionality

in systems software. Prior works do not perform deep cost analysis

on existing systems and architectures in the same level of detail

that we present.

High-Level Analysis and Application Optimization. High-

level analysis typically focuses on either comparing UVM to tradi-

tional manually-managed memory applications or comparing UVM

across different hardware platforms such as Power9 vs. x86_64

and NVLINK vs. PCIe. The overall performance impact of UVM

was studied in [22, 23, 37] on several applications for both non-

oversubscription and oversubscription. Manian et al. study UVM

performance and its cooperation with MPI across several MPI im-

plementations [25]. Gu et al. produce a suite of benchmarks based

on the Rodinia benchmark suite to perform these kinds of evalua-

tions [18]. Markidis et al. focus on advanced features of UVM, such

as runtime allocation hints and properties [10], while Gayatri et

al. focus on the impacts of prefetching and Power9 Address Trans-

lation Services (ATS) [16]. Several works have tried to improve

graph-processing or graph-specific applications that have known

irregular processing by utilizing the remote mapping (DMA) capa-

bilities of UVM as well as altering access patterns or data ordering

to make accesses less irregular [17, 26, 28].

Hardware and System Alterations. Some works discuss fun-

damental changes to the UVM architecture or UVM hardware to

improve overall performance, whereas our work focuses on identi-

fying performance characteristics and issues that are solvable on

existing hardware/software. Griffin offers architectural changes to

enhance page locality for multi-GPU systems [4]. Kim et al. simu-

late “virtual threadsž to effectively increase the overall number of

threads resident on the GPU to better hide latency, along with in-

creasing the fault batch size to allow the host to process more faults

at the same time [21]. Several works suggest replacements for UVM

that diverge from the demand-paging paradigm [3, 27]. Ganguly

et al. use the existing but sparsely utilized page counters system

within the existing UVM ecosystem to improve performance for

memory-oversubscribed workloads [15] and offer modifications

to eviction and prefetching algorithms after integrating these fea-

tures into hardware [14]. Similarly, Yu et al. also offer architectural

changes to coordinate eviction and prefetching [36].

UVM System Analysis. These works are the most similar to

ours. Allen andGe focus on the driver-level performance of prefetch-

ing, showing page-level access patterns and performance data for

the general case, but not the root source of UVM costs [2]. Kim

et al. show an example of batch-level size/performance data simi-

lar to ours [21]. In contrast, our work dives into the software and

hardware-based root causes under different scenarios and analyzes

the construction of these batches.

3 UVM FAULT BEHAVIORS

In this section, we focus on revealing the behavior of faults gener-

ated on the GPU. In particular, we demonstrate the following:

• The maximum number of outstanding faults in the fault buffer is

limited on a per µTLB, and sometimes per compute unit basis.

• Faults occur quickly, leaving no overlap between GPU and CPU

activities.

• Data dependencies within generated code may require additional

page faults.

Using this information, we can draw several conclusions about

hardware utilization and limitations and the features of the driver

workloads. We also gain insight into the fundamentals of how fault

batches are generated.

3.1 Experimental Environment

All experiments in this work are performed on a Titan V GPU with

12GB HBM2 memory using CUDA 11.2 and NVIDIA Driver version

460.27.04 on Fedora 33, kernel 5.9.16200.fc33.x86_64. The system

has an AMD Epyc 7551P 32-Core CPU with 128GB of memory.

We collect all data through a modified UVM driver distributed

alongside the NVIDIA driver. We modify the UVM driver into two

versions. One logs per-fault metadata for gathering overall statistics

about faults such as their GPU SM of origin. The other is instru-

mented with targeted high-precision timers and event counters for

collecting batch-level data. Batch data is logged to the system log

at the end of each batch. We use a custom logging tool that is more

reliable than dmesg.

For data presented in this work, we use the applications in table 1.

They are representative HPC applications, i.e., the kernels including

sgemm, Gauss-Seidel, and FFT are commonly used in various HPC

applications, and HPGMG is a full proxy application representing

algebraic multigrid methods.
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Table 1: Benchmarks used in evaluation and analysis.
Benchmark HPC Use Examples
cuBLAS sgemm Fluid Dynamics [34], Finite Element [5], Deep Learning [9]
stream Memory bandwidth (triad-only) [12]
cuFFT LAMMPs [30, 35], Particle Apps [31],

Molecular Dynamics [35], Deep Learning [24]
Gauss-Seidel HPCG [13], AMR [7]
HPGMG-FV Proxy App for AMR [1]

3.2 Formation of GPU Fault Batches

In UVM, the fault batch is the fundamental unit of work. Prior

work has shown that the time spent in servicing batches contributes

a significant portion of the runtime for UVM-based applications and

causes slowdown [2, 21]. We begin by examining how batches are

formed using targeted examples to gain in-depth understanding.

To understand how faults propagate to the GPU fault buffer

and eventually form a fault batch, we examine a simple vector

addition kernel using UVM for memory management. As shown

in listing 1, each thread performs the computation 𝑐 = 𝑎 + 𝑏 for a

unique index. Unique to this kernel is that each thread separates

its access by one page to give us a more comprehensive view of

faulting behavior. This operation is performed three times for three

different pages by each thread to verify the consistency of fault

behavior and demonstrate some faulting properties.

Listing 1: Vector addition kernel using first float of each

page.

1 #define FPSIZE 512 / / 4 096 b y t e s / s i z e o f ( f l o a t )

2 #define TSIZE 32 / / t o t a l # t h r e a d s

3 __g l o b a l _ _ void foo ( f l oa t ∗ a , f l oa t ∗ b , f l o a t ∗ c ) {

4 u i n t t i d = blockDim . x ∗ b l o c k I d x . x + t h r e a d I d x . x ;

5 s i z e _ t page0 = t i d ∗ FPSIZE ;

6 s i z e _ t page1 = page0 + ( FPSIZE ∗ TSIZE ) ;

7 s i z e _ t page2 = page1 + ( FPSIZE ∗ TSIZE ) ;

8 c [ page0 ] = a [ page0 ] + b [ page0 ] ;

9 c [ page1 ] = a [ page1 ] + b [ page1 ] ;

10 c [ page2 ] = a [ page2 ] + b [ page2 ] ; }

Listing 2: Annotated SASS assembly corresponding to line 8

in listing 1.

−−− sn i p −−−

LDG . E . SYS R9 , [ R2 ] ; <−− a [ page0 ]

LDG . E . SYS R0 , [ R4 ] ; <−− b [ page0 ]

FADD R9 , R0 , R9 ; <−− s c o r e boa rd s t a l l s : R9 , R0

STG . E . SYS [ R6 ] , R9 ; <−− c [ page0 ]

−−− sn i p −−−

We start by examining the basic characteristics of batches and

executing this simple vector addition code with a single 32-thread

warp. Figure 3 shows the faults in the order they occur and separated

by batches. For each of the three additions, faults corresponding

to the vector-addition access pattern perform two reads per thread

from vectors A and B followed by a write to vector C. The first

batch contains exactly 56 faults, including all vector A reads and

most vector B reads.

We draw two insights from this first batch of reads. (1) Each

thread can perform one or more memory read instructions resulting

in faults without blocking, the exact behavior of non-faulting CUDA

memory accesses. (2) The maximum number of outstanding faults

per µTLB is 56 on this architecture, which we have confirmed by

Figure 3: Faults of vector addition as a relative time series.

Batch 1

Figure 4: Faults of vector addition with real-time times-

tamps of arrival to the fault buffer. Faults clustered tightly

vertically always indicate a batch.

comparing against larger and more complex examples. Figure 4

further shows that faults from the same warp happen in rapid

succession when not held by hardware constraints and that the full

batch servicing time is short.

We observe a subtle faulting behavior from the second and third

batch of Figures 3 and 4: no write accesses can execute until all

64 prerequisite reads have been fulfilled, even though the required

memory addresses are known upfront. This behavior is traceable to

a subtle but consistent coding practice demonstrated in the resultant

SASS assembly code in Listing 2 for one iteration of the vector

addition. It becomes clear that the intermediate result of 𝐴 + 𝐵

is required before the result can be stored in vector 𝐶 and the

corresponding page fault is generated. A coalescing version of the

vector addition code implies that each faulting warp (or block)

requires at least two full fault batches to complete its work, despite

having the data requirements available upfront.

From this example, we can infer that in addition to the µTLB

fault limit, there is an additional fault rate throttling mechanism

prevents a single SM from creating too many faults. In Figure 3,

several batches consist of a small number (<< 56) of faults, even
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Figure 5: A single warp can generate faults up to the batch

size limit using prefetching.

though there is no data dependency blocking the issuance of faults.

These small number of faults are due to the presence of a rate-

limiting mechanism on SMs. This inference is consistent with the

original proposal of a far-faulting mechanism [39].

We demonstrate that (1) these limitations are tied to the µTLB

level and (2) faults are inserted quickly and are not in a data-race

with the UVMdriver, using instruction-level prefetching. Instruction-

level prefetching can escape both limits on the number of faults and

rate throttling. The compiled PTX high-level assembly code includes

a set of prefetching instructions, such as prefetch.global.L2,

which prescriptively prefetches data from global memory to the

L2 data cache. As with typical memory accesses, a page fault is

triggered if the data is not present in global memory. Prefetching

is unique because it does not require the register scoreboard, thus

presumably avoiding triggering the previously-mentioned limita-

tions. Figure 5 shows the resulting batches, where vectors A, B,

and C are prefetched upfront. A single warp can generate up to

256 faults in a single batch, capped by the software batch size limit
1. This behavior far exceeds the prior per-SM fault generation ca-

pabilities, confirming our prior assertions about code limitations

fault-throttling.

Table 2: Per-SM Source Statistics in Each Batch
Benchmark Avg Faults/SM Std. Dev. Min. Max.
Regular 3.06 0.43 0.09 3.20
Random 3.03 0.52 0.01 3.20
sgemm 0.85 0.60 0.01 3.20
stream 0.75 0.09 0.05 1.36
cufft 0.91 0.13 0.01 1.88
gauss-seidel 0.65 0.45 0.01 2.95
hpgmg 0.41 0.10 0.01 2.65

In table 2, we examine how these fault-limiting components scale

to more realistic workloads. Using data collected from the GPU

page fault buffer, we identify the SM originating each fault within a

batch. Generally, each batch contains faults from nearly all SMs on

the GPU. Depending on the application, there may bemore than one

fault, but no more than a few; each batch represents a combination

of work across the GPU SMs. This behavior is consistent with the

1Faults occurring beyond the batch size limit are dropped by the driver, and therefore
not shown.

Figure 6: Best fit of batch sizes vs. data migrated for one run

of several applications.

fault generation and rate-limiting behaviors discussed previously,

and it shows that SMs are served relatively “fairly.ž

Overall, this experiment indicates that, at scale, batches contain

faults from many SMs due to a combination of rate throttling issues

and code generation based on operations that take place between

data accesses. In the next section, we look at how characteristics of

the generated workloads influence overall performance.

4 UVM DRIVER WORKLOAD

The UVM fault batching shapes the resulting UVM driver work-

load, and the overall performance is determined by how the driver

handles this workload. For some applications, the driver workload

is relatively small but must be handled before new work can be cre-

ated. For applications that generate larger workloads, the driver is

forced to make decisions about appropriate handling. Interestingly,

some applications fit both categories at different points in a single

kernel, creating a complex and difficult-to-optimize scenario for

the driver. We investigate several key workload features:

• Data movement: the amount of data migrated to the GPU can be

a significant cost but is not the dominating factor.

• Fault duplicates: faults for the same address that appear in the

same workload batch are partially mitigated within UVM but can

otherwise have high overhead.

• Fault distribution/access pattern: the distribution of faults over

2MB VABlocks determines the trend for performance variance.

• Host OS interaction: some components, such as CPU page un-

mapping, require the host OS and surprisingly incur significant

overhead on the fault path.

This section explores how these characteristics influence batch

performance and, in turn, overall application performance.

4.1 Data Movement

Data Movement is the leading performance indicator in most

UVM scenarios for a given batch. While other factors impact the

overall performance, data movement is the primary purpose of the

UVM driver and sets the trend for performance. Figure 6 demon-

strates that the average batch cost rises linearly with the amount of

data moved for all applications. However, the average cost differs

with applications, and there is a high variance for each application.
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Figure 7: The percentage of time spent per batch performing

data transfer for sgemm. At most, the transfer time is approx-

imately 25% of the total batch time but is typically far lower.

Figure 8: Batches in time series for stream and sgemm. Up-

per: fault counts registered by the driver. Lower: fault counts

with duplicate faults to the same pages removed.

Even though data movement is a crucial cost indicator, the ac-

tual data migration is not the primary cost in a fault batch. Instead,

management is far more costly. We use the example of a moderately

sized sgemm to demonstrate this point. Figure 7 shows that transfer

time accounts for less than 25% of the total batch time for almost

all batches. This observation offers two insights: (1) Most batch

servicing time is not spent on data transfer. While faster hardware

may benefit performance, the more significant issue is ensuring

the driver efficiently utilizes the interconnect subsystem. (2) The

variance and skew must be derived from batch characteristics, the

driver software, and the driver’s interaction with the host OS and

hardware. We investigate the constituent components of the over-

all performance cost, including variance, in the remainder of this

section.

4.2 Duplicate Faults vs. Batch Size

To further understand the characteristics of batches over an appli-

cation’s lifetime and examine the causes of variance, we examine

the impact of duplicate faults on the overall batch performance. We

demonstrate that (1) the UVM driver workload is not uniform across

applications and non-trivial benchmarks have varying batch char-

acteristics, and (2) performance is more complex than just faults

per batch with duplicate faults as one factor.

First, we demonstrate that the UVM workload is application-

driven in terms of size and the number of duplicate faults. Figure 8

shows the actual batch size of all batches in an application execution

as a time series, where the upper pair presents the raw batch size

as pulled from the GPU fault buffer and the lower pair shows the

number of faults in each batch after duplicate faults have been dis-

carded. sgemm is far more complex than stream in implementation,

and such complexity manifests in the changes and “phasesž of the

batching behavior over time. Filtering out duplicates greatly alters

the average batch size for both applications, indicating the need to

address duplicate faults. However, the impact of duplicates is not

the same across applications or even within the same application.

In the context of batch workloads, such non-uniformity explains

portions of the variation in batch distribution previously seen in

Figure 6, as duplicate faults do not contribute to the migration size

but certainly account for a portion of overhead.

The driver classifies duplicate faults into two types: (1) faults to

the same address that originate from the same µTLB, and (2) faults

to the same address that originate from different µTLBs. The driver

handles these types at different times, and the latter has a greater

cost. Faults of type (1) commonly occur in codes with high spatial

locality within a warp or block, causing multiple threads to issue

the same fault; our data also indicate that SMs spuriously wake

up to reissue the same fault during a batch. Type (2) duplicates

indicate that there is data sharing among different blocks, and as

such, some type (2) faults fall into type (1) because adjacent SMs

share a µTLB. The reason for this distinction seems to be for more

detailed metadata tracking and potential future improvements, and

the difference is essential when considering alterations to how the

GPU handles duplicate faults. However, for the data presented, we

combine these types of duplicates as other costs overtake it.

Between batches, the fault buffer is flushed before a fault re-

play; any outstanding faults are dropped, and only faults that still

need to be serviced will be reissued. The flush allows large num-

bers of duplicates to be dropped to reduce bulk transfers at the

expense of overhead for dropping non-duplicate faults. We investi-

gate this tradeoff by comparing the performance of various batch

sizes. Figure 9 shows the results with the default batch size of 256.

Critically, performance is generally greater with larger batch sizes,

even though larger batch sizes have higher rates of duplicate faults.

As larger batch sizes lead to smaller numbers of batches for the

same problem size, we derive that the overhead of performing a

batch is more costly than processing a modest number of additional

duplicates within each batch. However, increasing the batch size

has diminishing returns. The maximum average number of unique

faults-per-batch across all tested applications is on the order of 500

in our test regardless of the batch size, and increasing batch size

beyond 1024 does not meaningfully affect the outcome. The number
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Figure 9: Batch size evaluation example with sgemm. There is a strong correlation between performance and batch size. Batch

sizes up to 6144 (max) are tested but are not shown as performance does not change.

of total faults available per batch is limited by a combination of (1)

flushing the buffer between batches and (2) the limitations on total

fault generation described in the previous section.

4.3 Fault Distribution/Access Pattern

We next examine the distribution of faults in a batch across memory,

e.g. spatial locality at the page granularity. Within the UVM driver,

all operations are logically separated on VABlock (page-aligned

2MB) regions, making VABlocks a source of performance variation.

Figure 10 shows batches colored by the number of unique VABlocks

present in the data transfers for each batch. While each batch is

subject to other sources of variance, one major trend is that, for

batches with similar workloads, more VABlocks incur higher costs

and cause more significant performance variation. This behavior

is consistent with our earlier observation that the driver handles

VABlocks within a batch independently.

Table 3: VABlock Source Statistics in a Batch.
VABlock/Batch Faults/VABlock Std. Dev. Min. Max.

Regular 41.27 5.93 5.10 1 83
Random 233.09 1.04 0.20 1 6
sgemm 6.96 9.81 16.58 1 128
stream 3.93 15.37 8.17 1 72
cufft 25.14 2.89 2.22 1 129
gauss-seidel 2.31 22.44 27.96 1 208
hpgmg 2.39 13.62 15.72 1 212

Processing each VABlock in parallel would be an intuitive op-

timization based on the driver design but would be highly work-

load imbalanced due to the large standard deviation in per-batch

VABlock representation. In table 3, there is a wide variation in the

number of VABlocks present in each batch, and these distributions

change with application. Additionally, there is a high variance in

the number of faults per-VABlock. As discussed in the previous

section, the root cause of this inconsistency is that each fault batch

contains pages from almost every SM on the GPU. Batched faults

originate from many different execution contexts, with only a few

pages representing each SM. The sole benchmark with low variance

is random access as it consistently has no locality within a single

VABlock, but still represents a very small workload per-VABlock.

4.4 Host OS Interaction

Management operations for host memory frequently require expen-

sive interactions with the host OS. The host component of UVM is

built on top of the existing virtual memory system in the Linux ker-

nel. Because of this, migrations are subject to additional latencies

incurred by existing mappings and the underlying virtual mem-

ory subsystem. We use an existing, UVM-optimized application to

demonstrate this issue - the HPGMG implementation provided by

NVIDIA [32]. Figure 11 shows an example of CPU-side behavior

influencing GPU-fault performance outcomes. The two subfigures

show the same problem with the same configuration, except (a)

uses a single OpenMP thread, whereas (b) uses the default OpenMP

thread configuration (one thread per logical core). Notably, the for-

mer configuration shows roughly twice the performance by simply

disabling multithreading, and the performance trend falls in line

with other applications that we have seen for a given data size.

Further, page unmapping represents a significant portion of

execution time for many batches, as represented by the tone of color

in Figure 11. Page unmapping is an operation in the existing virtual

memory system on the host that UVM extends to support faults

from GPU. Page unmapping is performed when the GPU touches

a VABlock that is partially resident on the CPU. In this scenario,

the driver calls into the kernel function unmap_mapping_range()

to unmap all pages within the VABlock that are resident in host

memory as part of the pagemigration. Interestingly, we observe that

OpenMP multithreading exaggerates this specific cost for HPGMG.

We note that this behavior does not occur in trivial cases, such as

parallelizing data initialization in the sgemm application, indicating

that data access patterns and thread affinity play a role in this issue.

We draw two conclusions about host OS interaction from the

data presented: (1) unmapping host-side data takes place on the

fault path and incurs significant overhead, and (2) certain host-side

parallelizations of an application using UVM can exaggerate these

unmapping costs. The host OS performs this operation, and the

costs likely stem from issues with virtual mappings across CPU

cores, flushing dirty pages from caches and TLBs, NUMA, and

other memory-adjacent issues. Additionally, these operations do

not take place in bulk due to the logical separation of VABlocks

within UVM. This is an area that deserves particular scrutiny as

HMM also performs host page unmapping on the fault path using

host OS mechanisms, implying a similar cost could be applied to

all devices when using HMM [11, 20]. Design and implementation

issues such as how unmapping takes place and if it needs to be

performed on-demand deserve further investigation.
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Figure 10: Batch time vs. to-GPUdatami-

gration size. For the same size, a higher

cost is associated with more VABlocks.

(a) (b)

Figure 11: HPGMG with single threading (a) and multithreading (b), where the

percentage indicates relative time per batch spent unmapping host-resident pages.

Multithreading incurs larger percentages for unmapping.

5 WORKLOADS WITH PREFETCHING AND
OVERSUBSCRIPTION

In practice, UVM offers two features by default to support its use

in real applications - prefetching and eviction. Prefetching is funda-

mental to allowing UVM applications to achieve performance com-

parable to programmer-managed memory applications [2]. Over-

subscription further simplifies programming, allowing applications

to work with out-of-core data, but typically at a high performance

cost. In this section, we analyze these two features, primarily iden-

tifying (1) how costs from the prior section translate into real work-

loads and (2) how prefetching and eviction impact batches qualita-

tively and quantitatively.

5.1 Oversubscription

Oversubscription allows applications to exceed GPU memory ca-

pacity by using a form of LRU eviction to swap pages back to the

host. When all GPUmemory has been previously allocated, eviction

automatically migrates “coldž data back to the host to make room

for new data at the granularity of 2MB VABlock. Figure 12 shows

batch timing data for sgemm using a problem size that exceeds GPU

memory. The application follows a somewhat expected trend in

terms of batch distribution: many batches are executed before full

GPU memory allocation without requiring eviction, and others (col-

ored) evict one or more VABlocks. Predictably, blocks containing

evictions incur greater overheads to (1) fail allocation, (2) evict a

VABlock and migrate the data back to the host, and (3) restart the

block migration process, including page population, a process by

which pages are filled with zero values before data is migrated to

them.

In Figure 13, we see an example where batches with the same

number of evictions appear to show multiple “levelsž of cost. The

levels showcase an interesting component of the eviction mecha-

nism. If a paged VABlock is resident on the CPU, requiring a call to

the previously discussed unmap_mapping_ranges(), and the GPU

memory is fully occupied, requiring an eviction, then both costs

are accounted for in the overall time. In contrast, if a VABlock

has already been made resident on the GPU but is later evicted,

then it is not remapped to the CPU unless the CPU accesses it. If a

VABlock was evicted once and paged back onto the GPU, then it

does not have to pay the large unmap_mapping_ranges() cost for

a second time, cutting a significant portion of the time and creating

the lower-cost levels of batches. This property is seen by comparing

the pair of figures, where the lower “levelž for the same number of

evictions always has near-zero unmapping range cost.

5.2 Prefetching

UVM utilizes a runtime prefetching routine as part of the default

behavior. The prefetchingmechanism is a type of density prefetching,

sometimes called tree-based prefetching, and is described in detail

in [2, 14, 21]. The prefetcher’s scope is limited to within a single

VABlock and is only reactive; the prefetcher only flags pages within

a VABlock currently being serviced for faults up to the full VABlock.

In Figure 14, we see the results of prefetching on the previously-

viewed applications. The number of batches is reduced by 93% from

the previous Figure 7 of the same sgemm with prefetching disabled.

However, some batches have highly exaggerated sizes due to large

prefetching regions. The relative performance trend is similar to

the non-prefetching trend.

Many instances of very high cost batches in this figure would

have been considered outliers in the previous figureswithout prefetch-

ing. These batches are traceable to the behavior seen in Figure 14,

showing that up to 64% of batch time is spent in GPU VABlock state

initialization not present in other batches. This time is largely spent

doing two operations: (1) create DMA mappings for every page in

the VABlock to the GPU, so that the GPU can copy data between

the host and GPU within that region, and (2) create reverse DMA

address mappings and store them in a radix tree data structure

implemented in the mainline Linux kernel. The batches creating

these mappings cannot be eliminated by prefetching, as they are

compulsory when a VABlock is first accessed. However, not every

batch requiring these DMA mappings has the same high cost. In-

line timing during these high-cost DMA batches shows that the

majority of time is spent in the radix tree portion of this operation,

indicating some performance issues potentially associated with

that data structure. However, we do not present this data here as

the low-level timing creates significant skew in the overall timing

information.
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Figure 12: sgemm under oversubscription

and eviction.
Figure 13: Streamunder oversubscription. Left: multiple łlevelsž for the same evic-

tion count. Right: a level may not include a portion of CPU unmapping.

The overall characteristic of prefetching shows that it makes a

very similar tradeoff to batch size capping for duplicate faults; re-

ducing the overall number of batches is highly effective in speeding

up UVM, even when it means performing larger quantities of work

in the short term. However, this serves to make the inconsistent

DMA mapping cost a more significant proportion of the overall

cost.

5.3 Eviction + Prefetching

Finally, eviction combining prefetching creates the most complex

scenario. Prior work has shown that the combination of prefetching

and eviction can harm performance for applications with irregular

access patterns [2, 21, 37]. The relationship is somewhat indirect

since prefetching contained within a resident VABlock cannot trig-

ger eviction. However, data that is prefetched before use but must

still be evicted later incurs an additional cost in both the initial

migration and the subsequent eviction. We evaluate this scenario

by comparing prefetching enabled and disabled scenarios for the

same applications.

Figure 15 shows dgemm with combined eviction and prefetching

properties in the migration size-sorted plot and as a time series.

The range of data transfers is still extended but not to the full 20MB

range observed in the prefetching example alone; we attribute this

to reduced block access density for the larger problem size.

We examine each pair of figures individually: (1) In Figure 15a,

we confirm that prefetching is still active and driving the larger

batch sizes. Prefetching tends to happen earlier where VABlock

are consistently resident on the GPU, and subsequent accesses

to the same VABlock can drive a robust prefetching response. (2)

Figure 15b shows eviction ranges remarkably similar to the non-

prefetching data set, fitting into the same sizes and ranges. The

eviction set has relatively low batch sizes because evictions are

caused by paging in new VABlocks, which have low access density

at first. (3) In Figure 15c, non-eviction batches that include new

VABlocks tend to have smaller batch sizes but have to pay the

high CPU unmapping cost discussed in the prior section. CPU

unmapping cost can occur at any time during execution as new

VABlocks are touched but tend to diminish later in execution after

each VABlock has been touched by the GPU at least once. (4) Finally,

in Figure 15d, we observe that creatingDMAmappings can still have

high overhead, although it is intermittent. This figure suggests that

Figure 14: Batch profiles of sgemm with prefetching enabled.

The mid-range cost batches are significantly reduced, and

the high-end outliers correspond to negative performance

impacts from creating and storing DMA mappings.

the high overhead may be caused by the growing of the underlying

radix tree, but further investigation is required.

Overall, we confirm our intuition about when these batch fea-

tures may occur and confirm that many of the cost relationships

discussed earlier still account for a large quantity of runtime even
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(a)

(b)

(c)

(d)

Figure 15: Batch profiles of sgemm by data migration (left) and as a time series (right). Prefetching occurs throughout the

execution. Evictions typically occur later in computation. Unmapping and GPU state setup occur regularly throughout the

application, and GPU state setup does not always have excessively high overhead.
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with eviction and prefetching enabled. Additionally, we find that

eviction costs are largely independent of the host OS performance

problems and need to be optimized independently. Prefetching can

significantly diminish the total number of batches, but the remain-

ing batches include all remaining OS costs, including DMAmapping

and host page unmapping.

5.4 Case Studies with HPCWorkloads

We use HPCworkloads as case studies and show their batch profiles

and the corresponding fine-grain fault behaviors. For these experi-

ments, prefetching is enabled and GPU memory is oversubscribed

(< 125% GPU memory capacity). Due to space limitations, we only

include the Gauss-Seidel and HPGMG benchmarks. We note that

while Figure 16c largely shows the order of batch occurrence in

time, multiple batches may be condensed in a cluster of points with

a much smaller time in Figures 16a and 16b.

Table 4: Batch and Kernel Execution Times

Benchmark
No Prefetch Prefetch

Batch Kernel Batch Kernel
Gauss-Seidel 60.477s 66.393s 15.340s 19.550s
HPGMG 32.384s 40.472s 7.261s 14.879s

Table 4 presents the overall application performance. Aggregate

batch times are smaller than kernel times as they exclude the ini-

tial interrupt time (negligible) and GPU time spent working with

in-memory data. With modest oversubscription, prefetching im-

proves the kernel performance by 3.39x and 2.72x for Gauss-Seidel

and HPGMG, respectively. Such performance gain suggests cer-

tain amounts of prefetching page hits. In general, the performance

gain from prefetching is expected to decrease as the percentage of

oversubscription increases and more evictions are involved.

For Gauss-Seidel, the batch time is small at the beginning of

execution without intensive prefetching or evictions. We observe

larger batch time and increasing number of prefetches around 0.5

second, consistent with the observed larger migration sizes for

batches with prefetching. Coincidentally, we observemore evictions

begin to occur just before prefetching. This is because eviction

creates new opportunities for prefetching to occur - freshly paged-

in VABlocks have a high chance of triggering prefetching with

subsequent accesses. Respectively, the fine-grain fault behaviors in

Figure 16c exhibit contiguous batches allocating and evicting pages

in similar, large page ranges. This indirect relationship between

allocation, eviction, and prefetching can be observed during the

rest of the workload execution.

For HPGMG, there are few faults during the setup phase so the

x-axis is cut in Figures 17a and 17b to make drawing space for

later execution. We observe similar coincidence between inten-

sive prefetches and increasing evictions in about four segments in

Figure 17. We observe the same relationship between allocation,

eviction, and prefetching that was present in Gauss-Seidel. Another

interesting observation is that Figure 17c clearly manifests the

Least-Recently-Used (LRU) replacement policy for page eviction.

In practice, LRU policy is essentially “earliest allocated pagesž for

these sufficiently dense access because the UVM driver has no infor-

mation about page hits. The first large number of evictions target

the first allocated pages, illustrated by the green vertical rectangle

at the beginning of the execution. The later evictions similarly evict

the remaining earliest allocated pages. This LRU policy may not be

optimal, as some evicted pages are needed shortly and must again

be migrated back to GPU.

6 DISCUSSION AND CONCLUSION

This work examines how faults are generated by NVIDIA devices

and handled by the UVM driver. We identify the key cost compo-

nents with unexpected performance characteristics in the UVM

fault path. We examine these components with UVM-specific work-

load features and highlight the impact of these features on overall

performance and fault batch workload processing. This work serves

as an initial investigation into the systems software performance

concerns for UVM and a proxy study for HMM and future interfac-

ing vendors/devices. Below we summarize the key findings, discuss

them in a wider scope, and discuss potential future work.

Key Driver Costs. Data movement contributes only a small

amount of overall cost in contrast to expectation. This suggests that

improvements to basic hardware, such as interconnect bandwidth

and latency, would still improve performance but would not resolve

the underlying issues.

Duplicate faults are an important performance issue that are

appropriately managed through limited batch sizes in UVM. Mini-

mizing duplicates is a secondary objective, however. The primary

objective is to accept as many unique faults as possible to reduce

the total number of batches. A simple improvement could be to

tune batch size based on the number of duplicate faults received.

Host OS operations, particularly unmapping CPU pages on the

fault path, contribute significant overhead. Some user code paral-

lelization schemes can exacerbate these costs.

CPU Unmapping and DMA Setup are particularly important

costs, as they take place on the fault path and are handled by the host

OS in HMM and UVM. In the case of HMM, the cost incurs on all

implementing devices/vendors. Likely, page-unmapping was never

intended to happen in frequent bursts with real-time constraints as

is the case with UVM and HMM. As HMM is common code, and

UVM is commonplace today, further investigation is necessary to

determine if this functionality can be improved to (1) incur less

overall overhead and (2) avoid excessive costs based on the chosen

parallelization of user applications. Alternatively, performing these

operations asynchronously and preemptively may be preferable

when an application shifts to GPU compute.

Driver Serialization. Code generation and device-level throt-

tling limit the generation of faults from each SM and ensure batches

representing every SM. Consequently, the GPU is generally stalled

during driver fault processing, leading to highly synchronous behav-

ior between the CPU and GPU with little overlap and high latency

cost. This is the key reason driver performance is so important to

overall performance.

The driver is a serial bottleneck for the parallel batch workloads

created by the GPU. Ideally, this could be improved by paralleliz-

ing the driver. The current architecture would lend itself towards

straightforward parallelization among VABlocks, but our workload

analysis shows this would create a very imbalanced workload. Paral-

lelizing faults per SM may be more reasonable if devices supported

targeted per SM replay. While these workload features are spe-

cific to NVIDIA GPUs, any vendor implementing HMM for parallel

devices will encounter similar concerns and delays.



SC ’21, November 14–19, 2021, St. Louis, MO, USA Allen and Ge

(a) Prefetches in Timeline (b) Evictions in Timeline (c) Faults vs Batches

Figure 16: Batch profiles and fault behavior of Gauss-Seidel with about 16% oversubscription. (a): batch profiles with prefetch-

ing. (b): batch profiles with eviction. (c): fault behavior. For simplicity, (c) dismisses the prefetching information and shows

batch ID instead of time.

(a) Prefetches in Timeline (b) Evictions in Timeline (c) Fault vs. Batches

Figure 17: Batch profiles and fault behavior of HPGMG with about 25% oversubscription.

Prefetching and Eviction. Prefetching and eviction are UVM-

specific features that improve performance and provide additional

programmer flexibility, respectively. Eviction creates levels of per-

formance per VABlock evicted. More cost-effective oversubscription

requires optimization independent of host OS problems as the un-

derlying performance issues stem from algorithmic issues and user

applications, not host OS interference. However, the combined OS

and eviction costs are exceedingly high.

Prefetching is effective because it eliminates large numbers of

batches and their associated overhead. However, prefetching cannot

mitigate batches with high DMA and CPU unmapping overhead,

increasing the impact of these costs in real workloads. Because

prefetching is constrained to within VABlock, it cannot eliminate or

preempt these high-cost batches. Methods, such as increasing the

prefetching scope to more than one allocation and asynchronous

prefetching, could mitigate these issues but may also complicate

eviction. These two features must be codeveloped for devices that

implement both.

Applicability to Other UVM-like Implementations. In gen-

eral, findings presented in this work should reflect similarly de-

signed hardware/software systems, particularly for other device

drivers that will serve as backends for HMM. First, we expect other

systems would take a batching approach as this is an effective opti-

mization, making our findings regarding batches, duplicates, and

batch sizes generally applicable. These design decisions are criti-

cal to the overall performance, as the system software overhead,

instead of the hardware data transfer time, is the dominant cost.

Second, any functionality invoking the Linux kernel is prone to gen-

erating high software overhead because the kernel is not designed

to process complex operations such as random page unmapping for

VABlocks with real-time performance. Finally, our findings regard-

ing fault origin distribution indicate that there is room for system

architects to explore driver parallelism and load balancing com-

plying with the VABlock-based execution order. With appropriate

load-balancing in fault servicing, parallelism could potentially hide

the latency of some system-side operations and allow faster bulk

fault servicing.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
All experiments in this work are performed on a Titan V GPU with
12GB HBM2 memory using CUDA 11.2 and NVIDIA Driver version
460.27.04 on Fedora 33, kernel 5.9.16-200.fc33.x86_64. The system
has an AMD Epyc 7551P 32-Core CPU with 128GB of memory.

Author-Created or Modified Artifacts:

Persistent ID:

https://zenodo.org/badge/latestdoi/356388244↩→

Artifact name: Instrumented Driver, Experiments, and

Evaluation Tool↩→

Citation of artifact: Tyler Allen. (2021).
tallendev/uvm-eval: SC2021-Artifact (v0.1).
Zenodo. https://doi.org/10.5281/zenodo.5148930

↩→

↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Titan V GPU, MD Epyc 7551P 32-Core
CPU, 128GB DDR4

Operating systems and versions: Fedora 33 running 5.9.16-
200.fc33.x86_64, CUDA 11.2, and NVIDIA Driver version 460.27.04

Compilers and versions: GCC 10.2.1 and NVCC
cuda_11.2.r11.2/compiler.29373293_0

Applications and versions: HPGMG-FV 0.3, UVM-modified CUDA
BabelStream, SGEMM-CUBLAS, and Several Synthetic Kernels

Libraries and versions: CUBLAS 11.2

URL to output from scripts that gathers execution environment
information.
https://github.com/tallendev/uvm-eval/blob/master/Au ⌋

thorKit.txt↩→


	Abstract
	1 Introduction
	2 UVM Background and Related Work
	2.1 The UVM Architecture
	2.2 Fault Batching and Handling
	2.3 Related Work

	3  UVM Fault Behaviors
	3.1 Experimental Environment
	3.2 Formation of GPU Fault Batches

	4 UVM Driver Workload
	4.1 Data Movement
	4.2 Duplicate Faults vs. Batch Size
	4.3 Fault Distribution/Access Pattern
	4.4 Host OS Interaction

	5 Workloads with Prefetching and Oversubscription
	5.1 Oversubscription
	5.2 Prefetching
	5.3 Eviction + Prefetching
	5.4 Case Studies with HPC Workloads

	6 Discussion and Conclusion
	References

