
Demystifying GPU UVM Cost with Deep Runtime
and Workload Analysis

Tyler Allen
School of Computing
Clemson University
Clemson, SC, USA
tnallen@clemson.edu

Rong Ge
School of Computing
Clemson University
Clemson, SC, USA

rge@clemson.edu

Abstract—
With GPUs becoming ubiquitous in HPC systems, NVIDIA’s

Unified Virtual Memory (UVM) is being adopted as a mea-
sure to simplify porting of complex codes to GPU platforms
by allowing demand paging between host and device memory
without programmer specification. Much like its storage-based
counterparts, UVM provides a great deal of added usability at
the cost of performance due to the abstraction and fault-handling
mechanisms. This is preventing HPC systems from being used
efficiently and effectively and decreases the overall value of GPU-
based systems.

To mitigate the cost of page fault stall time, NVIDIA has
introduced a prefetching mechanism to their UVM system.
This prefetcher infers data ahead-of-time based on prior page
fault history, hoping to satisfy faults before they occur. Such
a prefetcher must be cleverly designed and efficient, as it
operates under the constraints of a realtime system for providing
effective service. Additionally, the workload is quite complex
due to the parallel nature of GPU faults, as well as page
fault serialization and fault source erasure within the driver.
The current prefetching mechanism uses a density-prefetching
algorithm to offset the side-effects of receiving page faults in
parallel. While this prefetching can be very effective, it also has
a negative impact on the performance of GPU oversubscription.

In this paper, we provide a deep analysis of the overhead
caused by UVM and the primary sources of this overhead.
Additionally, we analyze the impact of NVIDIA’s prefetching and
oversubscription in practice on different workloads, and correlate
the performance to the driver implementation and prefetching
mechanism. We provide design insights and improvement sug-
gestions for hardware and middleware that would provide new
avenues for performance gain.

Index Terms—GPU, demand paging, UVM, performance

I. INTRODUCTION

Graphics Processing Units (GPUs) are now widely em-
ployed in supercomputers and data centers and provide the
majority, of the total computational power to accelerate tra-
ditional scientific and emerging machine learning workloads.
The recent development of Unified Virtual Memory (UVM)
technology for NVIDIA GPUs further enhances programmer
productivity by providing a single memory space, and au-
tomating memory management and data migration between
CPU host and GPU device physical memory modules. In
addition, it supports oversubscription of GPU memory through
demand paging, emulating CPU-sized memory spaces with
significantly smaller GPU memory. With UVM, programmers

are freed from tedious and error-prone manual memory man-
agement and data transfers instructions. The high productivity
of GPU computing enables domain researchers to leverage
GPU computational power to advance and discoveries at a
faster speed for broader ranges of scientific applications.

However, UVM introduces significant overhead. Similar
to traditional virtual memory, UVM maps virtual pages to
physical pages. Linux-like page table mappings are kept on the
GPU for general compute. When a page on demand encounters
a miss on the GPU page table walk, a far-fault occurs, which
raises an interrupt to the UVM driver and the host for handling.
Far-fault handling is costly as it involves multiple round trips
between the host and device for page table updates, data
migration, and software processing. Far-faults are a significant
performance bottleneck for situations where execution warps
are stalled to wait for the data. Prior work indicates that the
cost of a far-fault is 30-45 µs [1], and significantly higher under
oversubscription due to the extra cost of page evictions.

Currently, the costs of UVM can be mitigated but still
has substantial overhead. NVIDIA has introduced runtime
prefetching as the primary way to hide latency within UVM.
In figure 1, we use page-touch kernels to make four key
observations about UVM and prefetching: (1) cumulative data
access latency without prefetching generally increases one or
more orders of magnitude with UVM in comparison to explicit
direct management by programmers, (2) when all data fits in
GPU global memory, prefetching reduces the cost significantly,
but the overall time can still be several times higher than the
baseline, (3) once the GPU global memory is oversubscribed,
data access latency dramatically increases by another order of
magnitude depending on access pattern, and (4) prefetching
can aggravate the performance issues after oversubscription.
Ideally, prefetching can eliminate all the UVM overhead
regardless of memory requirements. This large performance
gap motivates us to locate the root cause of performance gap,
and identify strategies for improved prefetching and latency
hiding.

Researchers have begun to address the overhead of UVM
access. A few empirical studies [2], [3] use experimental data
to quantitatively evaluate the performance of various access
patterns with the default prefetching and eviction algorithms,
as well as improved batching, eviction, and prefetching so-

Fig. 1: UVM access incurs one or more orders of magnitude
greater latency than direct data transfer, when comparing
explicit data transfer to page-touch kernels.

lutions [1], [4]–[7]. This prior work reveals the prefetching
and eviction algorithms cause performance issues, but lacks
in-depth insight for locating the root causes and guiding the
design of effective latency-hiding prefetching and eviction.

Our work seeks to uncover the deeper costs and behaviors
of UVM components, to offer a quantitative explanation for
performance characteristics at a lower level than seen in prior
work. The main contributions of this work are:

• We provide an in-depth analysis of the cost of demand
paging.

• We examine application access patterns from the per-
spective of the driver to gain insight into the workload
required for eviction and prefetching.

• We examine the effectiveness of the current prefetcher in
terms of runtime performance and fault elimination.

• We look into the impact of oversubscription and the root
causes for performance degradation.

• We provide suggestions for paths forward on developing
effective prefetching and eviction approaches.

II. RELATED WORK

Several works have analyzed the performance of UVM from
different perspectives at a high level, but none that focus on
the detailed breakdown of the existing implementation and
hardware/software interaction that we provide. Several works
offer empirical comparison of overall application performance
using UVM to their respective direct-transfer implementations
with and without oversubscription [3], [8]–[11]. Additionally,
there are works that examine the performance of UVM using
performance hints and configurations provided by the CUDA
runtime [12], or leverage these hints for application-specific
optimization [13]. There are also performance comparisons
of UVM between the x86 and Power9 architectures, focusing
on the difference between NVLINK and PCIe, as well as the
ATS hardware provided on the Power9 system [14]. Gu et.
al published a series of benchmarks primarily derived from
the Rodinia benchmark suite for performing these kinds of
evaluations [2].

Prefetching and eviction with UVM are both areas of
interest with UVM in prior work. Several works focus on
introducing new methods for prefetching, eviction, or both
[1], [4]–[7]. The works presented here depend on the assump-
tion that UVM uses some method of hardware-implemented
prefetching, and infer mechanics based on empirical results.
For testing new methodologies, they implement their new
method in simulators. Our work utilizes the existing NVIDIA
UVM driver with functional analysis and understanding from
the source code, documentation, and corresponding Open GPU
documentation [15] provided by NVIDIA. Our performance
results are provided by driver instrumentation or NVIDIA-
provided profilers.

There are also efforts into fundamental improvements or
alternatives to UVM. Kim et. al propose minor hardware and
runtime modifications to improve the efficiency of the existing
UVM-like system [16]. Griffin offers a hardware/software im-
provement to page tracking for multi-GPU systems, improving
the system’s ability to ensure pages are local where they are
most needed [17]. Mojumder et al. offers an alternative to
UVM, modifying hardware between the host and device so that
all memory between host-device acts as shared memory [18].
These works have more in common with DMA and remote
mapping, which we do not focus on in our work.

III. COST OF DEMAND PAGING

In this section, we overview the behavior of UVM as well as
the scope of our investigation before digging into the baseline
costs of UVM without advanced features like oversubscription
and prefetching.

A. UVM Overview

UVM supports three page access behaviors. Paged migra-
tion moves data between devices in response to a page fault,
maps the page into the faulter’s physical space, and unmaps
from the previous location. Such a fault is known as a far-
fault [19] and the focus of our work as it is the common
behavior for Pascal and later architectures. We limit our
discussion on the other two behaviors: Remote Mapping maps
the requested data into the requester’s page tables without
actually migrating it and accesses it using DMA or a related
mechanism, and Read-only duplication duplicates data at two
or more physical devices and maps them locally to each device
under the constraint that the data cannot be mutated. We focus
on no oversubscription where application data fits in the GPU
global memory in this section and discuss oversubscription in
detail later.

UVM on-demand paging is implemented using GPU hard-
ware and CPU software working in tandem. To integrate with
the host OS, the UVM driver is provided as a kernel module
for the host OS to extend the virtual memory space and map it
to GPU global memory utilizing the host memory layout e.g.,
4KB pages for x86 architectures. The driver interfaces with
GPU hardware and manages related data structures. Figure 2
presents the architecture of paging mechanism. Page tables
are maintained on either side and map virtual pages to the

Fig. 2: UVM Fault-Handling Communication Architecture. (1)
The UVM driver reads fault pointers out of a queue. The
pointers lead to the specific fault entry in the fault buffer.
Faults are cached on the host. (2) After processing, the driver
will alert the GPU of data to be transferred. (3) The GPU will
initiate the data transfer to GPU memory through DMA. (4)
After one ore more repetitions, the CPU will issue a replay to
the GPU. Omitted: The UVM driver is initially prompted by
a GPU-originating trap.

assigned physical space. GPU MMUs, upon a miss on the
page table walk, issue an interrupt while the faulted pages in
a fault buffer. Upon the receipt of interrupt, the UVM driver
is invoked by the OS to access the fault buffer and handle
the faults, manage the updates of page tables, and initiate data
transfers between the host and device.

Paging at the 4KB granularity creates high management
overhead and reduces the utilization of the host-device in-
terconnect. To better utilize the host-device interconnect,
amortize the performance impact of transfer latency, and
ease management and tracking, UVM adds some additional
abstraction on top of the virtual memory space. Specifically,
UVM uses a four-level hierarchy for memory address space:
address spaces, virtual address ranges, virtual address blocks,
and pages. In general, a virtual address space is associated with
an application. Each address space is composed of “ranges”,
each corresponding to an arbitrarily sized memory allocation
i.e. cudaMallocManaged() or related allocator. A range
is broken up into 2MB sequential virtual address blocks,
VABlocks. VABlocks are page-aligned and are composed of
OS pages.

We coarsely categorize the operations of the UVM Driver
in three groups: pre/post-processing, fault servicing, and fault
replay policy. During pre-processing, the driver stores page
fault information read from the GPU fault buffer and sorts
them locally. Faults are fetched until all the fault pointer queue
is empty, the current batch of faults is full, or fault that is not
ready is encountered, depending on policy. The default batch
size is 256 faults. Per batch, the driver groups page faults based
on VABlocks and service the faults. Fault servicing involves
memory allocation, updating page tables, data transfer, and
possibly issuing one or more fault replays or other operations,

Fig. 3: Fault cost scaling and breakdown at different magni-
tudes of scale for two access patterns on the same data size.
Random tends to be slower, and has shifted proportions.

subject to the fault replay policy.

B. Experimental Environment

All experiments are performed on a Titan V GPU with
12GB HBM2 memory using CUDA 11.0 and NVIDIA Driver
version 450.51.05. The system has an AMD Epyc 7551P 32-
Core CPU with 128GB of memory. In particular, all experi-
ments fit in-core on the host, but oversubscription experiments
exceed the GPU memory capacity by some percentage.

Benchmarks used for evaluation include two synthetic
benchmarks including a regular and random access pattern,
cuBLAS SGEMM [20], Stream (triad-only) [21], Tealeaf [22],
HPGMG [23], forward and inverse cuFFT [24], and a cuSparse
kernel that converts a dense matrix to a sparse matrix and
preforms a sparse matrix multiplication [25]. All applications
were developed by the authors unless attributed, in which case
the authors ported thee applications to use UVM, with the
exception of HPGMG.

C. Cost Overview

To understand the costs associated with demand paging, we
first examine two simple kernels while varying the associated

data size over different runs. The first kernel is referred to as
a ”regular access” kernel, in that each thread accesses exactly
one page corresponding to the thread’s global ID. This means
that access is regular within a warp, block. The second kernel
has each thread access a single, random, unique page from
the global buffer. For these experiments, UVM prefetching is
disabled. We instrument the open-source UVM driver provided
by NVIDIA to time the involved operations. Figure 3 show the
total kernel time as well as the breakdown of time spent inside
the UVM driver.

The total cost is relatively constant in the order of 400-
600 µs for data volume less than 100KB, indicating there is
base overhead associated with UVM. This is different from
explicit memory management where the cost is initially neg-
ligible and grows with data volume. For larger data volumes,
cost increases roughly linearly as data volume becomes larger.
This corresponds to the roughly linear increase in the total
number of pages and therefore far-faults. For random accesses,
we find that the replay policy also begins to take a significant
proportion of the runtime.

Pre/post processing is shown to be negligible in cost, but
functionally important for the fault servicing and replay imple-
mentation. Pre-processing first gathers faults from the device,
performs basic bookkeeping and logical checks, and sorts them
into the appropriate VABlock bins. NVIDIA documentation
indicates that the driver uses a circular device-side queue to
store a fault pointer when a fault occurs [15]. The host can read
these pointers, which subsequently point to locations in the
global GPU fault buffer that contain the full fault information.
The driver will generally read at least a full batch from the
queue during every pass and cache the faults on the host to
avoid having to make multiple remote updates to the queue.
Faults may not be immediately available in the GPU fault
buffer due to the asynchronicity. Thus the driver may need to
poll the buffer until the appropriate “ready” field is marked
true or may be able to begin processing on previously fetched
faults. Sorting cost for batches is roughly constant due to the
nature of sorting and the relatively small size of batches.

Understanding the total cost calls for deep analysis of
the service and replay policy categories. In the following
subsections, we delve into the internal design of UVM and
analyze these two constituent costs.

D. Service Cost Breakdown

Fault servicing is a multi-step process that includes al-
locating physical space, zeroing out GPU pages, migrating
data from the source to the destination, mapping pages and
permissions, and a number of other tasks. We have created
subcategories that cover the main costs. Figure 4 shows the
cost distribution of service at small sizes showing our main
categories: Map Pages, Migrate Pages, and PMA Alloc Pages.

Physical memory allocation accounts for a large but vari-
able quantity of service cost. The UVM driver uses a physical
memory allocator to track physical allocations on the GPU.
Allocation is performed by calling into the main NVIDIA
driver, which is not open-source. This makes it difficult to

(a) (b)

Fig. 4: Breakdown of the fault service cost. PMA Alloc Pages
is a call into the proprietary NVIDIA driver to allocate physical
memory. It is actually part of the migration process if required.
Allocation seems subject to system latency, but allocations are
usually over-provisioned to avoid multiple calls.

infer any hardware-level cost, but the cost seems sensitive
to system latency. The allocator over-allocates memory to
cache it, knowing that the cost of each call is quite high.
This over-allocation and caching causes the allocation cost
to remain relatively constant and negligible at large sizes.
This cost is actually contained within the greater “Migrate
Pages” category, but is separated here as it is responsible for
the “constant” dominating transfer cost within UVM at small
sizes.

Page migration involves permission checking and updates,
memory allocation and zeroing of newly-allocated memory,
copying data from the source location to staging locations,
and eventually issuing GPU instructions to copy data from the
staging location to the final destination. Once data is staged on
the destination device, page duplication would be broken and
unmapped from source locations. The UVM driver initiates
the memory copy command, and notifies the GPU to actually
perform the data copy using DMA.

Mapping data includes updating the local and remote
page tables and issuing appropriate memory barriers to ensure
consistency on the GPU. While updating the GPU page tables
is part of the cost here, the importance of this step is in
bookkeeping and ensuring data consistency and integrity.

We draw several important insights from these analyses.
First, the number of VABlocks in a batch has a great impact
on service time. For the same number of page faults, a batch
containing fewer fully faulted VABlocks takes much less time
than a batch containing VABlocks each with one page fault as
operations can be coalesced and performed in bulk. The former
has better data locality, better support for coalescing data trans-
fers, and requires less overall allocation/staging operations.
Applications with random accesses would incur the most cost
by this rationale. Pre-processing enables these optimizations
by binning page faults into their respective VABlocks. Second,
the batch size affects the cost and the optimal size depends
on application access patterns and data requirement. Larger
batches have a better chance to have more page faults in
the same VABlock, which better utilizes the bandwidth and
amortizes migration cost, at the cost of potentially delaying

SMs and accumulating more faults in the fault buffer. The
appropriate tuning of batch size may differ on a per-application
basis, and would be an interesting area of future study.

E. Replay Policy Cost

Once the UVM driver has serviced all page faults in the
current batch and the data are ready on the destination location
on GPU, it notifies the GPU to replay far-faults. Replayable
faults do not block the faulting GPU compute unit, which
can continue running non-faulting warps until a replay
command is received [19]. Thus replayable faults improve
latency hiding on GPUs. The replay notification indicates that
the original memory access should be tried again. Note that
a single fault may need to be replayed multiple times due to
hardware fault capacity limitations or software policy.

Deciding when to notify fault replay has some considera-
tions due to trade-offs between latency and replay overhead. It
is not necessary for all outstanding faults to be serviced prior to
issuing a replay notification, but a notification allows faulting
SMs to resume sooner at the cost of additional instances of
replay overhead. Furthermore, issuing replays with outstanding
faults causes unsatisfied requests to fault again, generating
duplicate faults in the fault buffer and more processing for
the UVM driver subject to policy. On the other hand, waiting
too long to issue replays causes warps to be stalled for a long
period of time, which has a negative cascading effect latency
hiding.

To balance the tradeoff, the current NVIDIA driver supports
four policies. They differ by the condition for issuing a replay
notification.

Block policy — all faults for a block within a batch have
been serviced. This policy issues the replay notification the
earliest and the most frequent. Per the driver, this policy allows
for faulting SMs to resume earlier at the cost of more replays.

Batch policy — each fault batch has been serviced. This
policy has fewer replays with the potential for larger latency
for fault resolution.

Batch flush policy — this policy is the same as batch
policy, but the fault buffer is flushed after a batch is completed
but before it is replayed. The replay will cause all faulting
warps to resume, even if the faults are not satisfied, forcing
them to fault again. Flushing the buffer prior to this prevents
duplicates from appearing in the buffer at the cost of remote
queue management.

Once policy — all faults in the buffer have been serviced.
This policy is the extreme case with simple design and long
latency.

To demonstrate the impact of the chosen batching policy,
we ran trials with the “Batch Policy.” The primary difference
between this policy and the default is that the fault buffer is
no longer emptied after each batch, meaning that the policy
cost now only accounts for the act of issuing a replay. As
expected, figure 5 shows the tradeoff when compared to 3. We
omit the random access pattern here, but note that it behaves
similarly with roughly twice the service cost. The increased

Fig. 5: This figure demonstrates the same experiment as
3, except with the Batch Policy as the replay policy. Note
that the replay policy cost is severely diminished, while the
preprocessing cost is greatly increased.

preprocessing cost indicates that flushing the buffer has the
intended latency-reducing effect.

IV. PREFETCHING CHALLENGES AND PAGE-LEVEL GPU
ACCESS PATTERNS

A. Prefetching Design Constraints and the Tree-Based Algo-
rithm

To hide the latency of demand fetch of pages, the UVM
driver utilizes a prefetcher to migrate pages from the host
to device before they are used. UVM faces the fundamental
prefetching challenge of a finite lead time, the requirement to
effectively hide latency. The implementation of a prefetcher
in software adds several unique challenges. These challenges
limit the prediction algorithms and migration strategies, which
consequently decide the prefetching performance.

First, the lead time is more stringent than hardware prefetch-
ing due to the greater cost for executing in software, larger
data size, and different interconnect characteristics. To resolve
the conflict between small lead time and the costly delays,
the UVM prefetcher should try to prefetch a large volume
of data where possible to better utilize the H-D interconnect
bandwidth, reduce the overall number of faults, and amortize
the prefetching cost.

Second, the UVM page prefetcher only has coarse-grain,
partial information of page accesses. Particularly, the only
information specific is the address that originated the fault.
The driver lacks sufficient information for correlating faults
with their generating GPU core/thread. Poor prediction from
limited information may result in fetching a large amount
of unwanted data, wasting H-D bandwidth. Consequently,
UVM prefetching is left with the best effort option to support
common applications.

Third, UVM page prefetching adds transfer overhead that
could be wasted if prediction is poor. Unlike CPU main
memory, GPU global memory is several orders of magnitude
smaller, i.e., 10s of GB vs 100-1000GB. When GPU memory

is oversubscribed, aggressive prefetching wastes bandwidth for
both prefetching and later eviction.

To address these challenges, the UVM prefetcher for
NVIDIA GPUs presently adopts a simple two-stage prefetch-
ing mechanism that is invoked per-VABlock with at least one
faulted page within a batch, as described in section III. First,
every 4KB page is “upgraded” to the corresponding virtual
64KB aligned “big page.” This prefetching stage is relatively
simple but serves two main purposes. (1) This stage satisfies
common cases of spatial locality by prefetching the local data
around a faulted page. (2) This behavior emulates the behavior
of Power9 systems (64KB pages) on x86 systems (4KB pages),
allowing simplified reasoning for other sections of code while
prefetching is enabled.

The second prefetching stage uses NVIDIA’s implemen-
tation of a “density prefetcher” [26] as it is labeled in the
prefetcher source code, or sometimes referred to as a tree-
based prefetcher in other works [1]. Within the prefetcher, each
VABlock is conceptually represented by a 9-level (log2(

2MB
4KB))

binary tree. The leaves of the tree represent sequential 4KB
pages within the VABlock. Higher nodes represent the subtree
access density, e.g. the number of leaves in the subtree that
are already located on the GPU or are present in the fault
batch including pages flagged for prefetching by the upgrade
to “big pages”. For each of the nine levels starting from the leaf
representing the faulted page, the prefetch region is defined as
the largest subtree such that the subtree access density exceeds
the density threshold. The density threshold is a 1−100 value
set at driver load time with a default of 51. Therefore, by
default, if more than 51% of leaves in a subtree are resident
on the GPU or are presently faulted, the entire subtree will be
fetched.

Fig. 6: Illustration of the current UVM page prefetching tree
concept. The access density threshold is 51%, the default
value. Leaves represent 4KB pages in a 2MB address block.
At each level, values of the child node are accumulated in
the parent. The prefetch region is the largest such region that
exceeds the threshold. All nodes in the prefetch region will be
set to their maximum value, and leaf pages will be physically
fetched. The real implementation has nine levels total.

Figure 6 shows a sample prefetching scenario with only four
levels, and ignoring big page upgrading. Within this figure, one
more fault is sufficient for fetching the full region; requiring
approximately five faults to fetch the full region. However, as
the number of levels scales, single faults can cause a cascade
effect that fetches large amounts of data with far fewer faults

- an additional fault could cause an entire fifth level to be
fetched. This is further enhanced by the page upgrade stage,
as each fault fetches the entire corresponding level five subtree.
In this scenario, fetching the entire VABlock only requires five
faults, if they all belong to different level five subtrees.

B. Complex GPU Access Patterns

Fig. 7: Application access patterns with prefetching disabled.
The page index is the virtual memory page corresponding to
the fault address, adjusted so that there are no gaps in the
virtual memory space. Fault occurrence is the relative order
that pages were processed by the driver.

It is useful to look at page-granularity access patterns
to understand how applications are perceived from the per-
spective of the prefetcher. Specifically, the driver does not
see non-faulting data, and therefore the driver is oblivious
to the full access pattern. Figure 7 shows the access pattern
of several useful kernels. The x-axis represents the order
of faults and y-axis represents the normalized location of
the page in virtual memory. Points show an individual fault,
while black lines separate the allocated memory regions
(cudaMallocManaged()).

Each presented access pattern has unique elements to it that
provide insights about how application-level access patterns
are likely to appear to the driver, and we will discuss a
few key insights here. The “regular” access pattern described
before demonstrates that the GPU scheduler will prefer lower-
numbered blocks during access, but that there is no fixed

TABLE I: Application Fault Reduction

total faults faults w/
prefetching

fault
reduction (%)

Regular 2493569 442011 82.27
Random 2522931 51558 97.95
sgemm 6522314 223998 96.56
stream 3721584 578884 84.44
cufft 101494 10074 90.07
tealeaf 1193619 394148 66.97
hpgmg 139785 50231 64.06
cusparse 2342572 611719 73.88

Fault collections with and without prefetching for relatively
large undersubscribed problem sizes. Higher reduction is bet-
ter, and is equivalent to fault coverage.

ordering due to the nondeterminism of the GPU parallelism.
sgemm provides an access pattern similar to what we expect,
but we must consider that the pattern does not show the heavy
data reuse on taking place on the GPU. Stream offers an
interesting contrast to the regular access pattern- the three-
vector access pattern enforces a page-access dependency,
enforcing a much more strict ordering of page fault handling
than the regular access pattern. The hpgmg and cusparse
benchmarks both show portions that mimic the random access
pattern, characterizing the access behavior of sparse matrix
representations.

C. Effectiveness of Tree-Based Algorithm

Density prefetching ignores the precise ordering of page
faults, which is critical for handling faults from many GPU
cores simultaneously. This algorithm largely drops the tim-
ing aspect of prefetching. Instead, it utilizes the information
already being tracked about page location to make confidence-
based predictions about which data will be used. If a specific
VABlock is saturated with faults over any length of time, the
algorithm will confidently predict that the rest of that VABlock
will also be used.

We analyze the impact of access patterns by examining our
series of benchmarks. Referring to table I, we find that the
random access benchmark generates significantly less total
page faults than the sequential benchmark, indicating the
effectiveness of the prefetching in allowing the data to arrive
sooner, and the effectiveness of scattering faults within a
VABlock. The performance of the random access benchmark is
several times worse for moderate data sizes, indicating that the
additional faults and transfers from suboptimal prefetching and
driver overhead still harm the overall performance. In terms of
the number of faults eliminated, fault coverage, the prefetcher
is still quite effective in both cases. For all benchmarks, at
least 64% of faults were eliminated by enabling prefetching,
indicating a high degree of effectiveness for fault coverage
across a wide range of applications. Interestingly, in terms of
fault coverage, sgemm and the random benchmark performed
similarly in contrast to hpgmg and Tealeaf. All three of these
applications contain random-like segments, but the prefetcher
handles them very differently, indicating underlying timing and
dependency constraints.

For workloads that do not exhibit eviction (undersubcribed),
it would be preferable to use a more aggressive form of
prefetching, as all data can fit in GPU memory. Since the
data will most likely be used anyway, fetching it earlier better
utilizes hardware resources by doing less but larger transfers,
cutting down on overhead. The performance of using a 1%
threshold rivals the performance of an explicit direct transfer
of the full dataset, indicating that this should perhaps be the
default setting for UVM when high performance is desired.
This data is omitted due to space constraints.

In summary, for undersubscribed workloads the density
prefetcher can range from effective to highly effective in terms
of fault coverage, but can be difficult to code against. The
prefetcher is somewhat fickle, requiring a small number of
faults across the VABlock. If faults are not spread across the
VABlock, they risk being considered duplicate when the pages
are upgraded to large pages. The GPU scheduler and data
dependencies in kernels play a role in the order that faults
are issued, further complicating the issue of programming
against the prefetching algorithm. However, general applica-
tions should expect good performance out of the prefetcher,
and even better performance if aggressive prefetching is en-
abled.

V. THE GAME-CHANGER: OVERSUBSCRIPTION

Overstepping the GPU memory limitations into oversub-
scription adds complexity and performance concerns due to
eviction and its interactions with memory allocation, prefetch-
ing, and application access pattern. It is helpful to conceptu-
alize the GPU memory in this scenario as a fully-associative
cache for CPU memory where data must be evicted once the
capacity of the cache is exceeded. The cache-line size can
be treated as a VABlock, as the VABlock is the size that
memory is allocated on the GPU, although the full cache-line
is not migrated simultaneously. Once oversubscription starts,
we have to start considering cache evictions. Because the
UVM system is imposing a remote software cache abstraction
over large chunks of GPU memory, there is plenty of room
for performance concerns.

A. The Cost of Eviction

1) Eviction in UVM: NVIDIA implements an eviction
mechanism for the case where GPU memory is fully ex-
hausted. The eviction mechanism is triggered whenever the
driver attempts to allocate memory for a VABlock that does
not have memory reserved on the GPU already, e.g. the first
page fault. Evictions are performed at the VABlock level,
mirroring allocation. When evicted, any modified pages are
copied back to the host, and the physical memory allocation
for the VABlock is released.

The UVM driver uses least-recently-used eviction. The LRU
list is updated when a fault is handled from a VABlock. When
eviction is required, the VABlock at the end of the list is
evicted and removed from the list.

Fig. 8: This figure demonstrates sgemm with a problem size
that requires approximately 120% of GPU memory. Notably,
we show evictions at the relative time step they are issued.
Evict and re-fault is a worst-case performance scenario.

2) Direct and Indirect Costs:
Direct Costs. The direct cost of an eviction has two

components. First, the eviction itself has the same components
as a device-to-host fault for a VABlock not present on the host.
The changed data needs to be migrated, involving data transfer,
memory barrier, and page mapping/unmapping. Second, due to
the locking scheme in the driver, eviction causes the VABlock
faulting path to start over, as the faulting block lock must be
dropped while the evicted block lock is held. The cost of a
single eviction is not prohibitive compared to that of a page
fault, but the number and size of evictions can increase the
cost, as well as several indirect costs discussed in the next
section.

Indirect Costs In terms of specific cost changes indirectly
created by eviction, we observe the following:

Proportionally, mapping pages for the random access pattern
has only a slightly increased percentage cost with irregular
pattern, but the overall cost of mapping pages is much larger
due to the increased quantity of evict/map operations for small
data sizes.

Corresponding to access pattern, the eviction mechanism
can evict data that is still being used. Because the LRU
function is only aware of page-faults, it is possible that the
“hottest” regions of data may also be the most likely to be
evicted. The data would quickly be migrated to the GPU and
then never again updated in the LRU list. We notice this
specifically in figure 8, where data in the second memory
allocation is evicted immediately prior to being paged back
in, as the driver is ignorant to reuse on the GPU.

Prefetching can fetch data that will not be used prior to evic-
tion. For example, we will move a minimum of 64KB due to
the page upgrade size. With prefetching disabled, performance
improves after prefetching is disabled, demonstrating the cost
of prefetching to effective oversubscription. This can be seen
by comparing figure 9 to figure 3 from the prior section.

Delays due to frequent eviction cause larger backlogs of
faults in the fault buffer, requiring increased time to flush the
fault buffer before replays and accumulating the time spent
handling the fault replay policy referred to in section III.

(a) (b)

Fig. 9: A breakdown of performance for oversubscribed prob-
lem sizes with prefetching enabled. In these figures, “Map”
includes page migration and relevant costs. “All” refers to the
kernel execution time.

Fig. 10: This figure shows the parallel increase in data require-
ment as compared to compute rate for the sgemm kernel.

3) Total Eviction Costs: It is important to understand that
the impact of eviction is at its greatest when data access is
irregular. We can see this clearly in figure 9, where different
access patterns show an order of magnitude difference in
performance. This is due to the asymmetry between the size
and granularity of eviction (VABlock) and the amount of data
requested by a single fault (4KB). If the pattern is truly irregu-
lar, such as in our random benchmark, it is possible that only 4
bytes are required, but the full page fault processing must take
place as well as the full 2MB data allocation and prefetching.
This causes the GPU memory to become exhausted far quicker
than required, as huge portions of memory are allocated but
unused within a VABlock. The prefetching also causes larger-
than-needed transfers for data that may not be used; a stark
contrast to the huge fault reduction seen for random access
patterns in the previous section. Profiling shows that for the
32GB problem size in our benchmarks, the regular synthetic
benchmark requires only the base 32GB of data compared to
504GB for the random access despite having only 12GB of
GPU memory emphasizes the importance of these memory
constraints. The overhead of eviction mixed with the sheer
number of additional faults and evictions from the poor access
pattern account for the order-of-magnitude performance loss.

The overall cost depends on the measure of oversubscription

TABLE II: SGEMM Fault Scaling

Size # Faults # Pages
Evicted

Evictions
per Fault

29228 590719 0 0
30764 653504 0 0
32300 756502 79360 0.104
33836 1139293 2611200 2.291
35372 566018 3234748 5.714
36908 757216 6454152 8.523
38444 1827628 25170708 13.772

...
47660 2697727 38092576 14.120

Evictions as problem size increases for SGEMM. Problem
size is n for matrices A,B,C where size = n2. Pages evicted
are the number of pages that required explicit data migration
between host and device. Correlating to figure 10, performance
degrades as the number of pages evicted per fault increases.

as well as the access pattern itself. Since the GPU behaves as
a cache, it follows similar locality principles as a traditional
hardware cache. This is demonstrated in figure 10, showing
compute rate of SGEMM decreasing as oversubscription in-
creases. The worst effect is noticeable when applications cross
the threshold where local data no longer fits in-core, and
data is evicted prior to being used. For example, performance
degrades significantly after 120%, because the access pattern
shows this evict-before-use behavior. Figure 8 shows the
access pattern at this point, including evictions. Data evicted
before use is a worst-case performance scenario. This cost
correlation can also be seen in table II, where we can see that
the number of pages that require migration due to eviction
rises as a partial indicator of performance.

VI. DISCUSSION AND CONCLUSIONS

A. Challenges in Effective Prefetching and Eviction

Prefetching and eviction have related costs that can magnify
the costs of utilizing oversubscription. Prefetching can cause
the movement of unneeded data to the GPU, creating increased
data migration costs for no return on the investment. Eviction,
on the other hand, while necessary for large data sets, has
cost similar to that of a page fault, but can also induce
more overall page faults if done incorrectly. We review some
challenges present in the current architecture that make these
issues difficult to solve.

Prefetching. The primary cost of prefetching is in additional
data migration. While the data that is migrated already has
physical memory allocations associated with it, the cost of
migrating that data increases the latency of data movement
and slows the handling of further faults.

Density prefetching has limitations when eviction is in-
volved, because there is no guarantee that any prefetched
data will actually be used. While a key advantage of density
prefetching is its ignorance of precise fault order, it loses a
lot of information about spatial locality. Large prefetching
regions can be triggered by a handful of faults separated by
large temporal spans, demonstrating no real spatial locality
but fetching the data anyway. Traditional hardware techniques

are difficult to use in this situation because they rely on
precise fault orderings requiring per-core access information
not available to the UVM driver. Likewise, it is difficult
for application developers to tune their application against
the prefetcher due to the complexity of timings and data
dependencies.

Eviction. Eviction is a very difficult problem because it
has its own algorithmic component, as well as a dependency
on the memory allocation functionality. Algorithmically, the
implementation is still dependent on page fault information,
which is insufficient. The granularity of evictions also impacts
its performance, which is locked in UVM at the VABlock
level.

The LRU algorithm used for eviction has some internal
performance contradictions. As discussed in prior sections, the
eviction mechanism relies on page faults to a specific VABlock
to upgrade that VABlock in the LRU list. This has two key
implications: (1) Data that is accessed on the GPU but does not
cause a page fault because the page is present will not upgrade
its location in the LRU list. (2) VABlocks that are fully resident
on the GPU will never be upgraded in the LRU list until they
are evicted and re-faulted. This has negative implications for
hot data at both the page and VABlock granularity. The hottest
data will theoretically be migrated to the GPU the fastest, after
which it will descend to the bottom of the list towards eventual
eviction, requiring the data to be re-paged in later.

Addressing allocation granularity, 2MB blocks may be too
coarse for allocations and evictions for irregular applications.
While 4KB granularity is very small, irregular applications
may not even have locality at the 4KB granularity. This
allocation size can lead to many evictions and inefficient use
of GPU memory.

B. Potential Paths for Better Prefetching and Eviction

There are a few possible paths for prefetching and eviction
that could offer improved performance, or at least additional
tradeoff opportunities.

Increased fault origin information. The GPU presently
provides quite a bit of information along with a GPU fault,
primarily for tracing higher-level information about the origin
of a fault. This information is sufficient to trace the originating
graphics processing cluster (GPC) and perhaps the specific
µTLB that generated the fault. Another level of information
that offers SM ID, logical thread ID, or related information
sufficient to pinpoint a specific area of execution, as well as
program counters for source code correlation, could open the
door for existing prefetching methods from literature at the
cost of additional fault buffer overhead.

Flexible memory allocation granularity. As discussed
before, irregular applications may benefit from a tuneable
parameter allowing different sized memory allocations. This
could allow for greater on-GPU memory utilization and reduce
the overall number of evictions, as well as allowing for greater
prefetcher understanding of desired migrations. However, this
would likely be a difficult change as it potentially requires

more complex µTLB implementations and highly flexible
driver implementation.

GPU memory access-aware eviction. NVIDIA has in-
cluded support for multiple-granularity access counters for
GPU-level memory access on GPUs since the Volta architec-
ture [27]. This is an interesting feature that is not currently
being utilized but could potentially be used for smarter and
more effective eviction. This idea is explored and simulated in
Ganguly et al. [4], but has not been explored on a real system.
This information opens the door to many types of eviction
of different complexity. This information could also poten-
tially be used for better prefetching inference, assuming the
additional data access and transfer does not have prohibitive
overhead.

Adaptive prefetching. The existing mechanism has demon-
strated that it is quite capable depending on the circumstance.
Using existing information, the driver could adapt some simple
heuristics to adaptively tune prefetching. For allocation sizes
under the GPU memory limitations, there is little reason not to
use highly aggressive prefetching to emulate the direct transfer.
In contrast, oversubscribed sizes could disable prefetching
entirely, or infer from the fault/eviction load how effective
prefetching is and tune the prefetching threshold accordingly.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. National Science
Foundation under Grants CCF-1551511 and CNS-1551262.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay
between hardware prefetcher and page eviction policy in cpu-gpu
unified virtual memory,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New York,
NY, USA: ACM, 2019, pp. 224–235. [Online]. Available: http:
//doi.acm.org/10.1145/3307650.3322224

[2] Y. Gu, W. Wu, Y. Li, and L. Chen, “Uvmbench: A comprehensive
benchmark suite for researching unified virtual memory in gpus,” 2020,
arXiv:2007.09822.

[3] Q. Yu, B. Childers, L. Huang, C. Qian, and Z. Wang, “A quantitative
evaluation of unified memory in GPUs,” The Journal of Supercomputing,
vol. 76, no. 4, pp. 2958–2985, nov 2019.

[4] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under GPU memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, may 2020.

[5] Q. Yu, B. Childers, L. Huang, C. Qian, H. Guo, and Z. Wang,
“Coordinated page prefetch and eviction for memory oversubscription
management in gpus,” in 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2020, pp. 472–482.

[6] Q. Yu, B. Childers, L. Huang, C. Qian, and Z. Wang, “Hierarchical page
eviction policy for unified memory in gpus,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2019, pp. 149–150.

[7] ——, “Hpe: Hierarchical page eviction policy for unified memory in
gpus,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 10, pp. 2461–2474, 2020.

[8] K. V. Manian, A. A. Ammar, A. Ruhela, C.-H. Chu, H. Subramoni,
and D. K. Panda, “Characterizing cuda unified memory (um)-aware
mpi designs on modern gpu architectures,” in Proceedings of the
12th Workshop on General Purpose Processing Using GPUs, ser.
GPGPU ’19. New York, NY, USA: ACM, 2019, pp. 43–52. [Online].
Available: http://doi.acm.org/10.1145/3300053.3319419

[9] J. M. Nadal-Serrano and M. Lopez-Vallejo, “A performance study of
cuda uvm versus manual optimizations in a real-world setup: Application
to a monte carlo wave-particle event-based interaction model,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 6, pp.
1579–1588, 2016.

[10] M. Knap and P. Czarnul, “Performance evaluation of unified
memory with prefetching and oversubscription for selected parallel
cuda applications on nvidia pascal and volta gpus,” The Journal
of Supercomputing, vol. 75, pp. 7625–7645, Nov. 2019. [Online].
Available: https://doi.org/10.1007/s11227-019-02966-8

[11] R. Landaverde, Tiansheng Zhang, A. K. Coskun, and M. Herbordt, “An
investigation of unified memory access performance in cuda,” in 2014
IEEE High Performance Extreme Computing Conference (HPEC), 2014,
pp. 1–6.

[12] S. Chien, I. Peng, and S. Markidis, “Performance evaluation of
advanced features in cuda unified memory,” 2019 IEEE/ACM Workshop
on Memory Centric High Performance Computing (MCHPC), Nov
2019. [Online]. Available: http://dx.doi.org/10.1109/MCHPC49590.
2019.00014

[13] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and
W. mei Hwu, “Emogi: Efficient memory-access for out-of-memory
graph-traversal in gpus,” 2020, arXiv:2006.06890.

[14] R. Gayatri, K. Gott, and J. Deslippe, “Comparing managed memory
and ats with and without prefetching on nvidia volta gpus,” in 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2019, pp. 41–46.

[15] NVIDIA, “Open gpu documentation.” [Online]. Available: https:
//nvidia.github.io/open-gpu-doc/

[16] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified
memory management in GPUs for irregular workloads,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, mar 2020.

[17] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin:
Hardware-software support for efficient page migration in multi-gpu
systems,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 596–609.

[18] S. A. Mojumder, Y. Sun, L. Delshadtehrani, Y. Ma, T. Baruah, J. L.
Abellán, J. Kim, D. Kaeli, and A. Joshi, “Mgpu-tsm: A multi-gpu system
with truly shared memory,” 2020, arxiv:2008.02300.

[19] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016, pp. 345–357.

[20] NVIDIA. cublas. [Online]. Available: https://developer.nvidia.com/
cublas

[21] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-
stream v2.0: Benchmarking the achievable memory bandwidth of many-
core processors across diverse parallel programming models,” in High
Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel, Eds.
Cham: Springer International Publishing, 2016, pp. 489–507.

[22] U. M.-A. Consortium. (2016) Tealeaf. [Online]. Available: https:
//github.com/UK-MAC/TeaLeaf CUDA

[23] N. Sakharnykh. High-performance geometric multi-grid with gpu
acceleration. [Online]. Available: https://developer.nvidia.com/blog/
high-performance-geometric-multi-grid-gpu-acceleration/

[24] NVIDIA. cufft. Test. [Online]. Available: https://developer.nvidia.com/
cufft

[25] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C
Programming, 1st ed., W. Zhang and C. Zhao, Eds. GBR: Wrox Press
Ltd., 2014.

[26] Y. He, S. Wan, N. Xiong, and J. H. Park, “A new prefetching strategy
based on access density in linux,” in International Symposium on
Computer Science and its Applications, 2008, pp. 22–27.

[27] NVIDIA. Nvidia tesla v100 gpu architecture. [On-
line]. Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

