
Characterizing Power and Performance Of
GPU Memory Access

Tyler Allen and Rong Ge
School of Computing
Clemson University

Email: tnallen, rge@clemson.edu

Abstract—Power is a major limiting factor for the future
of HPC and the realization of exascale computing under a
power budget. GPUs have now become a mainstream parallel
computation device in HPC, and optimizing power usage on
GPUs is critical to achieving future goals. GPU memory is
seldom studied, especially for power usage. Nevertheless, memory
accesses draw significant power and are critical to understanding
and optimizing GPU power usage. In this work we investigate the
power and performance characteristics of various GPU memory
accesses. We take an empirical approach and experimentally
examine and evaluate how GPU power and performance vary
with data access patterns and software parameters including
GPU thread block size. In addition, we take into account
the advanced power saving technology dynamic voltage and
frequency scaling (DVFS) on GPU processing units and global
memory. We analyze power and performance and provide some
suggestions for the optimal parameters for applications that
heavily use specific memory operations.

Index Terms—High Performance Computing, GPU Memory
Access, Heterogeneous Computing, Power and Performance
Characterization

I. INTRODUCTION

Power has become a first-order constraint for high per-
formance computing and limits the design and employment
of systems and components. The expected exascale comput-
ers around 2020 will operate under a 20 MegaWatts power
budget [7], and computer components must perform within
their thermal design point to behave normally. To accelerate
computation with reduced power consumption, power efficient
graphics processing units (GPU) are prevalent in HPC sys-
tems today, and accelerator based heterogeneous computing
emerges as a major parallel computing paradigm [3]. Nonethe-
less, GPU-based systems are similarly facing power limits, and
it is critical for the GPU accelerators to optimally use power
for application performance and system throughput.

Understanding the power effects of GPU memory accesses
is important to addressing the power challenge for GPU-based
heterogeneous computing for two main reasons. First, GPU
memory accesses play a tremendous role in real-world GPU-
based applications [25]. For example, GPU memory is the
only method of data communication between the host and the
GPU. In addition, the highly parallelizable applications that
can benefit from GPU for performance involve a large number
of data accesses to the levels of GPU memory system [8], [21].
Poor memory accesses lead to poor application performance

Fig. 1. Measured average power for maximum FLOPs benchmark [12] and
global memory sequential read for each possible SM clock frequency. The
memory-intensive benchmark consumes significantly more power than the
compute intensive benchmark. Notice that this represents the total power
consumed by the GPU, and that memory operations increase the average
power by a substantial amount.

and inefficient use of power. Second, memory accesses could
be the dominating power consumer among GPU operations.
Unfortunately, research has focused on GPU computation and
processing units, and little work has been done to investigate
the power effects of GPU memory accesses [17], [26].

Figure 1 presents the total GPU power for a memory
intensive kernel and a compute intensive kernel with floating
point operations respectively. The memory intensive kernel
consumes 20-30% more power than the compute intensive
kernel. Note that the total GPU power consists of the power
of the processing units and the power of GPU memory
systems. GPU memory accesses affect power differently than
CPU memory accesses. On host CPUs, memory intensive
applications generally consume less power than CPU intensive
applications [14].

The power effect of GPU memory accesses is complex and
determined by many factors. Programming for general purpose
GPU has been at a high level and the impact of specific low
level instructions is unknown [18], [20]. In addition, energy
efficient scheduling, which has been effective for CPU power
management, is infeasible for GPU as the scheduler is embed-
ded in the device firmware and not exposed to researchers [5],
[20]. Furthermore, memory accesses involve different memoryE2SC2016; Salt Lake City, Utah, USA; November 2016

978-1-5090-3856-5/16/$31.00 c©2016 IEEE

levels and locations, and have different data patterns [5].
Consequently, they show different performance and power
characteristics. The insights gained for CPU memory accesses
are not applicable to GPU due to their different architectures.

To further our ability to optimize performance on power
constrained GPU accelerated heterogeneous systems, in this
work we investigate the power and performance characteristics
of various GPU memory accesses. We take an empirical
approach and experimentally examine and evaluate how GPU
power and performance vary with data access patterns and
software parameters including GPU thread block size. In
addition, we take into account the advanced power saving
technology dynamic voltage and frequency scaling (DVFS)
on GPU processing units and global memory. We present
our findings and provide some suggestions and insights to
programmers and system designers.

In our experiments we examine a unique category of
memory operations. These operations target performance crit-
ical memory locations including global memory and shared
memory. They test typical data localities between threads and
between blocks that appear in GPU kernels applications. These
patterns include sequential accesses and regularly strided
accesses. We use benchmarks from the SHOC benchmark
suite [12] for these experiments.

II. RELATED WORK

GPU memory accesses are commonly known performance
bottlenecks, and have been the target of code analysis for
performance improvement. Wu et al. examined the perfor-
mance impact of memory operations using machine learn-
ing and static analysis and accordingly partitioned programs
to generate efficient code for heterogeneous platforms [26].
Similarly, Chen et. al studied memory placement across uni-
form memory, and proposed a compiler to statically remap
memory[9]. This work could be extended to analyze the power
impact of memory operations. Jog et al. studied the memory
interferences of multiple concurrent running application and
discussed the limitation of schedulers in addressing such
interferences [19]. Hong and Kim provided a method for
predicting GPU kernel performance based on static analysis of
parallelism, particularly with memory instructions in general
[17]. Chen et al. show a statistical GPU power learning and
prediction model [10]. Our work differs and studies the power
characteristics of memory access at finer granularity.

Researchers have attempted to understand the performance
and power consumption of GPU applications. McLaughlin et
al. presented a power characterization derived from a case
study of GPU graph traversals [23]. Jiao et al. experimentally
studied several computational kernels and concluded that these
characteristics vary more significantly on the GPU than on the
traditional CPU, and that the ratio of memory accesses is a
predictor for power consumption [18]. Coplin et al. made simi-
lar observations, noting that small increases to the dependency
on memory accesses can decrease performance and increase
power consumption [11]. Our work aims to provide power

characterization on the impact of memory transactions at a
deeper level.

Numerous studies have investigated how to manage GPU
power consumption. Paul et al. used compute and bandwidth
sensitiveness of programs to determine the number of compu-
tational units, computational unit clock frequency, and memory
clock frequency for programs execution to reduce power at
minimal performance cost [25]. GreenGPU scheduled DVFS
of both GPU cores and memory in a coordinated manner
based on their utilizations for energy savings with marginal
performance degradation [22]. Similarly, other work proposed
to use DVFS exclusively to change performance and power
usage [6], [13], [15], [24]. We focus on the memory operations
and investigate their important affecting factors including
DVFS and software scheduling parameters such as block size.

GPU memory poses a new challenge that differs from
traditional main memory. Previous work either studies GPU
memory operations for performance improvement or manages
power consumption at application level. We aim to study GPU
memory operations in great detail and characterize their power
and performance to aid algorithm designer and researchers for
energy efficient heterogeneous computing.

III. EVALUATION METHODOLOGY

We experimentally evaluate the power and performance
characteristics of various GPU memory accesses, and examine
their variations with resource scheduling and power saving
technology. In this work we concentrate on the discrete
NVIDIA GPGPU cards for high performance computing.

A. Memory Access Patterns

Memory level. We focus on two memory levels: global
memory and shared memory, over which programmers have
direct control. There are totally six types of memory in the
GPU memory system for NVIDIA GPU cards in four levels
from bottom to top: global memory, L2 cache, a read-only
texture cache, L1 cache, shared memory, and register [5]. The
L2 cache is smaller than global memory and serves to provide
a performance increase for data that is read by multiple SMs
[5]. The L1 cache is disabled in CUDA compute version 3.5
used in our experiments. Even though the L2 cache plays a
role in the performance of global memory, it is not directly
managed by programmers. We do not consider texture cache
as it requires additional explicit optimizations, which vary by
hardware [5].

Global memory is off chip and used by all applications. It
stores data migrated to the GPU by the programmer or written
back to main memory. As global memory I/O is the slowest
form of I/O on GPU, applications move data in global memory
into shared memory inside the kernel to improve performance.

Shared memory is on-chip and located in the SM. It is
configurable by users and its scope is thread block. Shared
memory is frequently used as an optimization for applications
where data is reused once inside of a thread block.

Access locality. We test sequential access and strided access
for global memory. With sequential access, a thread operates

Fig. 2. Memory in the strided experiment is read locally by a single thread
and strided by a fixed length between threads.

on sequential chunks of memory. Such access provides per-
formance and power measurements for situations where there
is a high measure of locality in data operations. With strided
access, each thread reads from contiguous memory addresses,
but the memory addresses of different threads have a stride
with a fixed length. The strided access is illustrated in Figure 2.
Typically, sequential accesses has much better locality than
strided accesses.

We do not classify shared memory as sequential or strided
access as there is generally no penalty for strided access.
Strided memory can cause bank conflicts, which result in a
performance penalty. It would take a larger study to examine
the affect of the different combinations of bank conflicts. Bank
conflicts can be avoided through clever memory layout [16].

In our experiments we include a short period to load a
dynamically calculated value into the shared memory. Such
processing is necessary because we can not read shared
memory until data is written by threads.

Global memory and shared memory are both read-write, so
our experiments use both operations.

B. Evaluation Metrics and Variables

We collect both performance and power information. Perfor-
mance is measured by achieved memory bandwidth in GB/s.
Power is measured on the entire GPU card, and consists of
the power consumed by SMs, memory, and other devices
such as fan. We do not isolate the memory power, as it is
not available through the CUDA or NVML APIs. Instead, we
present relative comparisons to show the impact of memory
accesses. Each experiment is repeated 20 times and statistical
average is reported.

We evaluate the power characteristics with the following
variables:

Problem size. In general memory access bandwidth in-
creases with problem size until it saturates. For the reported
results, we choose a sufficiently large problem size which
saturates memory bandwidth.

Block size. Block size, or the number of threads per block,
is a software parameter that programmers can specify in
programs. Block size is the smallest unit that can be assigned
to a SM.

SM clock frequency. Users can use SM clock frequency
to schedule GPU performance states. The higher frequency
corresponds to a higher performance state with more power
consumption.

C. Experimental Environment

All experiments are performed on a NVIDIA K20c GPU
card hosted by an Intel Xeon E5-2670 v3 CPU. The SM clock
frequencies supported by the K20c are 614 MHz, 640 MHz,
666 MHz, and 705 MHz. The card also supports 758 MHz,
which is considered unstable and not used for our experiments.
The K20c card also support 324 MHz for both SMs and global
memory. We do not report results with this low frequency as
the performance is unacceptably poor.

The maximum number of threads per block is limited to
1024 on the CUDA compute version 3.5 [5]. We use various
block sizes in our experiments, by incrementing 32-thread
between 32 and 1024 threads inclusively. The minimum warp
size, which is also the basic unit of parallelism, is 32 threads
[5].

The benchmarks are based on the Device Memory bench-
mark from the SHOC benchmark suite [12], [25]. The Device
Memory benchmark from the SHOC benchmark suite per-
forms several different memory operations: Global Memory
Read, Strided Global Memory Read, Shared Memory Read,
Global Memory Write, Strided Global Memory Write, and
Shared Memory Write. Each operation is tested in a unique
CUDA kernel. Each benchmark performs the same number of
its respective memory operation. Read operations inherently
require more registers, so read benchmarks use more registers.
The implications of this will be discussed in detail in the
Results section.

IV. EXPERIMENTAL RESULTS

For all reported results in this section, though sometimes not
shown, the problem size is sufficiently large to create stable
results and saturate memory bandwidth. The comparison of
these problem sizes can be seen in Figure 3.

A. Sequential Access to Global Memory

Read. Read performance varies with block size and the
trend consists of four segments starting at block sizes of 32,
448, and 640, as shown in Figure 4. Each of these segments
exists regardless of the clock speed. The first segment at
block size 32 delivers the lowest performance due to unused
hardware. With only 16 blocks queued on the SM simul-
taneously, the total number of threads in the SM is 512.
Occupancy, the percentage of warps in each SM that are
queued simultaneously, is 25% of the hardware capacity of
2048 threads [5]. As block size increases to 64, performance
quickly reaches its maximum.

The next two segments are caused by thread limitations
related to occupancy, shown in Figure 5. The first limitation
is due to the number of threads. As mentioned previously,
there are 2048 threads available per SM on this architecture.
If we choose 672 threads per block, it does not divide the

Fig. 3. Power consumption of global memory read benchmark with SM
frequency 705MHz at three different problem sizes. Notice that they are
statistically equivalent, and that the trend simply becomes more clear with
the larger problem size.

2048 threads evenly. We are limited to a maximum occupancy
of 98% (2016 threads). Additionally, in order to approach
full occupancy, the number of registers available to each
warp (32 threads) is 32 registers or less (64k registers

2048 threads). This
kernel requires 44 registers per instance, meaning that we can
have, at most, 1489 threads. We could fit 2 blocks here, so
occupancy would be near 66% (2∗672 threads

2048 maximum threads). However,
CUDA version 3.5 allocates register resources for 4 warps at
a time [1]. This is known as the warp allocation granularity
[1]. Since there are 21 warps in a 672 thread block, we
must allocate 24 warps worth of registers. This causes the
required number of registers per block to be 33792. Since
33792 registers per block >

64k total registers
2

, half of the total
number of registers per SM, we can only allocate a single
block. This leaves occupancy at approximately 33%. The drop
after block size 640, as well as the other mentioned segments,
is due to these limitations. This sudden, large decrease in
occupancy accounts for why the 640-672 thread segment is
more noticeable than the previous ones. NVIDIA provides
an occupancy calculator that can be used to make these
calculations for other parameters [1].

Performance increases with the SM clock speed for all
segments. Performance gained between 614MHz and 640MHz
is quite significant, and the performance gained by the increase
from 640MHz to 666MHz is also proportional. However, the
performance gain from 666MHz to 705MHz is much less.

Power consumption changes with block size similarly as
performance, except for that it fluctuates and has several
additional segments. The fluctuations are explained by changes
in the amount of used hardware, occupancy, as shown in
Figure 5. Power follows the same pattern as occupancy. The
fact that these segments do not show up in the performance
chart indicates that performance may already be saturated and
additional hardware may not provide any benefit.

Power consumption increases proportionally with SM fre-
quency as seen in Figure 4. This is expected, as a higher clock

rate corresponds to a high performance state and consumes
more power.

Between performance and power, running SMs at very high
frequency may not be optimal, especially when power is lim-
ited. As frequency increases, power proportionally increases
while performance may stop increasing or only marginally
increase. In this case, power is not used to deliver performance
but instead wasted.

Write. Performance is constant relatively to block size, as
seen in Figure 6. Performance does not experience the same
immediate increase after block size of 32. This implies that a
hardware bottleneck is reached immediately with this block
size. Performance in general increases with SM clock fre-
quency. Increasing the clock speed from 614MHz to 640MHz
provides the most significant performance increase. Further
increasing frequency has diminishing return and performance
difference between 666MHz and 705MHz is mostly negligible
at some block sizes.

Power, similar as performance, stays relatively stable as
block size increases. Unlike performance that has diminishing
return from increasing frequency, power increases proportion-
ally with clock frequency. Such difference suggests that it may
not always be optimal to increase frequency for performance
when power is limited.

Read vs. write. Overall, read and write for most cases
have similar performance and power trends. In addition, they
have similar performance. The block size 32 is an exception
for global read with low performance. We note that power
proportionally increases with frequency while performance has
a diminishing return.

Read noticeably consumes more power than write. This
can be attributed to the L1 cache being disabled on CUDA
compute version 3.5. The texture cache is instead enabled,
and only read-only objects are stored there [5]. This causes
reads to check the texture cache first before hitting the L2
cache, causing performance loss and additional power usage.
Write operations always go through the L2 cache, but never go
through the texture cache as it is read-only. Our experiments
show that reducing the number of registers used by the read
kernel, specifically to the point where it can achieve greater
occupancy, increases the power consumption and performance.
These figures are not shown due to space. The discrepancy
in achievable kernel occupancy was discussed earlier in the
methodology section.

B. Strided Access to Global Memory

Read. Performance dramatically decreases as block size
increases, shown in Figure 7. Interestingly 32 threads per block
actually displays the best performance despite the inability to
occupy hardware. Profiling with the NVIDA nvprof shows that
as block size increases, L2 cache hit ratio decreases greatly
and global memory bandwidth increases as more data need to
be fetched from the global memory. Performance noticeably
improves as SM clock frequency increases for all block sizes.
Though the improvement becomes less for larger block sizes
in general.

Fig. 4. Performance and power for global sequential read with problem size 1048576 work items.

Fig. 5. Occupancy and power of the global memory read at 705MHz SM
clock frequency with problem size of 180224 work items. There is a strong
correlation between power and occupancy. A smaller problem size is used
here due to limits on the amount of occupancy data that can be recorded.
Occupancy registers overflow too quickly to be recorded for large data sets.

Power increases with block size in general except after
certain block sizes, such as 608, even though performance
decreases. This decrease in power consumption is attributed
to occupancy, as explained earlier in the global read section.
Power also increases with SM clock frequency.

Smaller block sizes are preferable for strided global accesses
due to their relatively higher performance and lower power
consumption. Our explanation is that smaller block sizes have
improved locality and therefore increased L2 cache hits. The
larger block sizes incur more cache misses and thus involve
more hardware to complete the operations and fetch data from
memory.

Write. Performance drastically decreases with block size,
as shown in Figure 8. The decline from 32 threads to 64
threads is significant, but afterwards the rate of decline is
relatively small. Performance increases with the SM clock
speed proportionally for all block sizes.

Power is relatively constant to block size but increases with
SM clock frequency. This fits the pattern of occupancy until

it is able to fully occupy the hardware, with minor variations
due to occupancy afterwards.

Read vs. write. For either read or write, performance does
not directly correlate to power. For both operations, block size
of 32 is optimal with the best performance. As block size
increases, power tends to flatten or increase while performance
decreases.

Write achieves significantly lower performance than read
while consuming more power. Profiling shows that the number
of transactions with the L2 cache is significantly higher for
write than read. As a result, bandwidth for both the L2 cache
and global memory are reduced. Increased occupancy for
strided hardware is associated with a decline in performance
due to L2 cache misses. The fact that power stays relatively
high for write implies that occupancy still has a large impact
on total power consumption even when memory accesses are
stalled.

Sequential vs. strided. As expected, we observe that per-
formance for strided read and write are significantly lower
than the sequential operations. The poor performance is due to
the inability to coalesce multiple accesses to global memory,
forcing them to be serialized [4]. Interestingly, strided read
consumes less power than sequential read, but strided write
consumes more power than sequential write.

C. Access to Shared Memory

Read. Performance increases dramatically with block size
until block size reaches 128. With this block size, SM can be
fully occupied. This indicates that occupancy plays an impor-
tant role in shared memory performance. As block size further
increases, performance almost stays stable with little varia-
tions. The small variation is predictable with occupancy cal-
culation. Performance increases with clock frequency, shown
in Figure 9. The increase is not exactly proportional, and the
increment from 666MHz to 705MHz is slightly greater than
the others.

Power basically follows the similar trend as performance. It
increases drastically with block size until block size of 128.
It also increases with SM frequency.

Fig. 6. Bandwidth and power for global sequential write with problem size 1048576 work items.

Fig. 7. Bandwidth and power for global strided read with problem size 1048576 work items. Performance is significantly different than those for sequential
read. The greatest performance occurs at 32 block size.

Fig. 8. Bandwidth and power of the global strided write with problem size 1048576 work items. Performance decreases by up to 25% at large block sizes.
Power noticeably increases even though performance degrades as block size increases.

For shared read, both performance and power are pre-
dictable with specific patterns. Essentially, the range of possi-
ble performance and power consumption is large. Depending
on programmers’ preference to high performance or low
power, they can select large or small block sizes.

While not shown, the write operation has similar trends

and quantities as the read operation for both performance and
power. Limited by space, we don’t include those results.

V. DISCUSSION

Memory accesses play an important role in the performance
and energy usage of GPUs. The primary memory device units
that programmers can control are off-chip global memory, and

Fig. 9. Bandwidth and power for shared memory read with problem size 1048576 work items. Compared to global sequential read, shared memory read is
more stable, achieves higher performance, and consumes slightly more power.

on-chip shared memory. Programmers can read and write to
both types of memory. Both types of memory have their own
advantages and disadvantages, and the performance and power
depend on the data layout in memory, clock speed of the SMs
on the GPU, and the block size of the kernel. Problem size
does not have any affect once the hardware is sufficiently
saturated.

Accessing global memory in a sequential pattern provides
predictable results with stable performance above a certain
occupancy threshold across all other block sizes. Power is
stable as well, with writes using less power than reads due to
the read-only texture cache enabled in place of the L1 cache in
CUDA compute version 3.5 and read having a higher threshold
for performance. It appears that there is room for future study
in the trade off between power and performance for read. Read
has higher potential for performance at the cost of power if
the code is optimized for registers.

Performance gains are proportional to power increases when
SM clock frequency increases with the exception of the
increase to 705MHz from 666MHz. This final performance
gain may not be worth the increased power consumption when
power is a limited if the kernel is largely global sequential
operations.

Accessing global memory in a strided pattern causes a
severe performance degradation from sequential. Interestingly,
performance of strided memory accesses rapidly decrease as
block size increases for both read and write due to reduced L2
cache hit ratio. Write performance decreases at a slower rate
than read performance, but still substantially. The difference
in performance is due to difference in occupancy between
our benchmarks and possibly the texture cache. Increased
block size is directly associated with decreased performance
in strided operations. Programmers should limit block size if
these operations are necessary.

Power tends to be relatively stable as block sizes increase
in this situation, indicating that the least number of threads
possible is ideal if strided global memory accesses are the
primary operation in a kernel. Strided write uses most instan-
taneous power, and memory accesses use more power than

pure computation. In addition, power is not reduced propor-
tionally with the loss of performance. Increasing the SM clock
frequency increases power proportionally to performance at
every interval.

Shared memory has greater overall performance for both
read and write operations compared to global memory, as
expected. Both operations have a similar trend to sequen-
tial global memory accesses in that performance increases
dramatically until a certain occupancy threshold is met, and
then stabilizes. The power usage of shared memory shows a
strong relationship with occupancy. Every increment of SM
clock frequency shows a proportional increase in power and
performance. Shared memory has a power advantage over
global memory when theoretical occupancy is unaffected by
the change. Shared read has similar power consumption to
global read, but shared write shows a slight increase in some
cases. Strided accesses are not a concern on shared memory,
but are replaced with bank conflicts which may be reduced or
avoided by the programmer [16].

Theoretical occupancy can be used to judge the small vari-
ations in power consumption variation in general. Theoretical
occupancy is also useful for measuring small variations in
performance for operations where performance is stable across
block sizes, including sequential and shared reads and writes.
Occupancy is still a factor in final power usage, even when
kernels spend large amounts of time performing memory
accesses. Changes in the quantity of registers used, especially
when making adjustments between types of memory and
number of accesses, can have a large impact on power and
performance if occupancy is affected. Large drops in power,
and possibly performance, due to occupancy can occur at
large block sizes due to the number of resources required
for each block. We notice that occupancy is a good predictor
of power consumption. We also confirm that occupancy is a
good indicator of performance only if the kernel is bound by
bandwidth and bandwidth is not saturated [2]. Occupancy can
be tricky to calculate theoretically due to the warp allocation
granularity. We notice that power still increases for every warp

within the warp allocation granularity, meaning that register
warp resources are allocated but power does not increase just
from this allocation. Furthermore, power is directly influenced
by occupancy regardless of performance limitations. Occu-
pancy, power, and performance show the same trend when
performance is not limited. It may be possible to decrease
power consumption below a certain limit by using a thread
count targeting a particular occupancy.

VI. CONCLUSION

We presented performance and power characteristics of a set
of data access patterns that test specific individual memory
operations. We provided some observations and conclusions
about the results of these benchmarks, and provided some
suggestions for programmers. The main findings are that
SM clock frequency is generally proportional to power in-
creases, and that performance may be proportional to the
power increase. Global reads and writes may not see the
same performance benefit at higher clock frequencies. Global
strided operations should try to use smaller block sizes to
increase performance. Shared operations are generally stable,
and performance is optimal past the 128 thread per block
mark. It may be possibly to slightly tune performance for
some operations by changing the block size to achieve a
desired occupancy. Occupancy has the largest impact on global
sequential operations. Global read shows greater performance
and power consumption than write when hardware utilization
is equal. However, some situations cause reads to use more
registers, and therefore more hardware, than write.

In future work, we will study newer GPU architectures for
performance differences. We will also study other families of
hardware for the same characteristics. We plan to use the find-
ings from this work to design energy efficient heterogeneous
computing for real applications.

REFERENCES

[1] “Cuda occupancy calculator.” [Online]. Available: developer.download.
nvidia.com/compute/.../CUDA Occupancy calculator.xl

[2] “Cuda warps and occupancy.” [Online]. Available:
http://developer.download.nvidia.com/CUDA/training/cuda webinars
WarpsAndOccupancy.pdf

[3] “TOP500 Supercomputer Site,” http://www.top500.org, accessed: 2016-
09-08.

[4] “Whitepaper nvidia’s next generation cuda compute architecture: Fermi,”
NVIDIA, Tech. Rep., 2009.

[5] “Whitepaper nvidia’s next generation cuda compute architecture: Kepler
gk110,” NVIDIA, Tech. Rep., 2012.

[6] Y. Abe, H. Sasaki, S. Kato et al., “Power and performance charac-
terization and modeling of gpu-accelerated systems,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, May
2014, pp. 113–122.

[7] K. Bergman, S. Borkar, D. Campbell et al., “Exascale computing study:
Technology challenges in achieving exascale systems peter kogge, editor
& study lead,” Dept. of Computer Science and Eng., University of Notre
Dame, Tech. Rep., 2008.

[8] S. Che, J. W. Sheaffer, M. Boyer et al., “A characterization of
the rodinia benchmark suite with comparison to contemporary cmp
workloads,” in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC’10), ser. IISWC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/IISWC.2010.5650274

[9] G. Chen, B. Wu, D. Li, and X. Shen, “Porple: An extensible optimizer
for portable data placement on gpu,” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2014, pp. 88–100.

[10] J. Chen, B. Li, Y. Zhang, L. Peng et al., “Tree structured analysis
on gpu power study,” in Computer Design (ICCD), 2011 IEEE 29th
International Conference on, Oct 2011, pp. 57–64.

[11] J. Coplin and M. Burtscher, “Energy, power, and performance charac-
terization of gpgpu benchmark programs,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2016, pp. 1190–1199.

[12] A. Danalis, G. Marin, C. McCurdy et al., “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, ser.
GPGPU-3. New York, NY, USA: ACM, 2010, pp. 63–74. [Online].
Available: http://doi.acm.org/10.1145/1735688.1735702

[13] R. Ge, R. Vogt, J. Majumder et al., “Effects of dynamic voltage and
frequency scaling on a k20 gpu,” in 2013 42nd International Conference
on Parallel Processing, Oct 2013, pp. 826–833.

[14] R. Ge, X. Feng, S. Song et al., “Powerpack: Energy profiling and
analysis of high-performance systems and applications,” IEEE Trans.
Parallel Distrib. Syst., vol. 21, no. 5, pp. 658–671, May 2010. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2009.76

[15] J. Guerreiro, A. Ilic, N. Roma et al., “Multi-kernel auto-tuning on gpus:
Performance and energy-aware optimization,” in 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, March 2015, pp. 438–445.

[16] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan)
with cuda,” in Gpu Gems 3, 1st ed., H. Nguyen, Ed. Addison-Wesley
Professional, 2007, ch. 39.2.3, pp. 855–866.

[17] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 152–163.
[Online]. Available: http://doi.acm.org/10.1145/1555754.1555775

[18] Y. Jiao, H. Lin, P. Balaji et al., “Power and performance characteri-
zation of computational kernels on the gpu,” in Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), Dec
2010, pp. 221–228.

[19] A. Jog, O. Kayiran, T. Kesten et al., “Anatomy of gpu memory
system for multi-application execution,” in Proceedings of the 2015
International Symposium on Memory Systems, ser. MEMSYS ’15.
New York, NY, USA: ACM, 2015, pp. 223–234. [Online]. Available:
http://doi.acm.org/10.1145/2818950.2818979

[20] S. W. Keckler, W. J. Dally, B. Khailany et al., “Gpus and the future of
parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, Sept 2011.

[21] E. Lindholm, J. Nickolls, S. Oberman et al., “Nvidia tesla:
A unified graphics and computing architecture,” IEEE Micro,
vol. 28, no. 2, pp. 39–55, Mar. 2008. [Online]. Available: http:
//dx.doi.org/10.1109/MM.2008.31

[22] K. Ma, X. Li, W. Chen et al., “Greengpu: A holistic approach to energy
efficiency in gpu-cpu heterogeneous architectures,” in Proceedings of
the 2012 41st International Conference on Parallel Processing, ser.
ICPP ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
48–57. [Online]. Available: http://dx.doi.org/10.1109/ICPP.2012.31

[23] A. T. McLaughlin, “Power-constrained performance optimization of gpu
graph traversal,” Master’s thesis, Georgia Institute of Technology, 2013.

[24] X. Mei, L. S. Yung, K. Zhao et al., “A measurement study of
gpu dvfs on energy conservation,” in Proceedings of the Workshop
on Power-Aware Computing and Systems, ser. HotPower ’13. New
York, NY, USA: ACM, 2013, pp. 10:1–10:5. [Online]. Available:
http://doi.acm.org/10.1145/2525526.2525852

[25] I. Paul, W. Huang, M. Arora et al., “Harmonia: Balancing compute
and memory power in high-performance gpus,” in Proceedings of the
42Nd Annual International Symposium on Computer Architecture, ser.
ISCA ’15. New York, NY, USA: ACM, 2015, pp. 54–65. [Online].
Available: http://doi.acm.org/10.1145/2749469.2750404

[26] G. Wu, J. L. Greathouse, A. Lyashevsky et al., “Gpgpu performance
and power estimation using machine learning,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 564–576.

View publication statsView publication stats

developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xl
developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xl
http://developer.download.nvidia.com/CUDA/training/cuda_webinars_WarpsAndOccupancy.pdf
http://developer.download.nvidia.com/CUDA/training/cuda_webinars_WarpsAndOccupancy.pdf
http://www.top500.org
http://dx.doi.org/10.1109/IISWC.2010.5650274
http://doi.acm.org/10.1145/1735688.1735702
http://dx.doi.org/10.1109/TPDS.2009.76
http://doi.acm.org/10.1145/1555754.1555775
http://doi.acm.org/10.1145/2818950.2818979
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1109/ICPP.2012.31
http://doi.acm.org/10.1145/2525526.2525852
http://doi.acm.org/10.1145/2749469.2750404
https://www.researchgate.net/publication/312966519

