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Abstract—High performance computing systems will need to
operate with certain power budgets while maximizing perfor-
mance in the exascale era. Such systems are built with power
aware components, whose collective peak power may exceed the
specified power budget. Cluster level power bounded computing
addresses this power challenge by coordinating power among
components within compute nodes and further adjusting the
number of participating nodes. It offers more space to increase
system performance by utilizing the available power budget more
efficiently within and across the nodes.

In this paper, we present the design of a hierarchical multi-
dimensional power aware allocation framework, CLIP, for power
bounded parallel computing on multicore-based computer clus-
ters. The framework satisfies the specified power bound by
managing the power distribution among nodes at the cluster
level, and among sockets, cores and NUMA memory modules
at the node level. The power allocation is enforced with mul-
tiple complementary power management techniques, including
memory power level setting, thread concurrency throttling, and
core-thread affinity. We present an application characterization
method based on applications’ scalability and an associated
performance model, which can accurately determine the optimal
number of participating compute nodes and components, and
their power distribution for given applications. Experimental
results on a Haswell-based computer cluster show that the
proposed scheduler outperforms compared methods by over 20%
on average for various power budgets.

Index Terms—Power-bounded computing, resource coordina-
tion, performance analysis, multicore computing, cluster.

I. INTRODUCTION

Power has become a critical constraint for the evolution

of large scale High-Performance Computing (HPC) systems

and commercial data centers. This constraint spans almost

every level of computing technologies, from IC chips all the

way up to data centers. Power constraints can be induced

by physical barriers, technical difficulties, and economical

burdens [12, 23]. Resultantly, future supercomputers must

operate more efficiently and intelligently under strict power

budgets. For example, the U.S. Department of Energy sets the

power budget for exascale computing as 20 megawatts [27].

Such reality forces the HPC community to transform its

goal from maximizing performance without power limit to

improving performance within similar power budgets. The

increasing demands for computing and memory performance

from scientific and big data applications makes the problem

even more challenging.

Optimally managing power for HPC workloads requires an

intelligent strategy to control the number of participating nodes

and allocate the available power budget to different subsystems

(CPU, uncore and memory) within nodes. Inappropriately

assigning nodes can either cause inefficient utilization of the

available power or lead to subsystems running at ineffective

power levels, thereby delivering inferior performance. For

example, if fewer nodes are assigned, each node gets excessive

power budget than demand and applications’ parallelism can’t

be fully explored at the cluster level. Contrarily, if more

nodes are assigned, each node receives insufficient power to

coordinate the constituent components at their optimal states,

leading to significant performance degradation. System power

management is challenging, requiring careful balance between

the cluster, node, and component levels to avoid power waste

and performance degradation.
Maximizing application performance under limited power

budgets should explore applications’ characteristics [40] and

be application-aware [15]. For example, node-level concur-

rency varies significantly with applications; simply using the

same CPU and memory power budgets cannot efficiently trans-

late the supplied power to performance for every application.

Figure 1 shows that application-aware power distribution and

resource allocation on a single node can improve the perfor-

mance of NPB-SP by up to 75%. Application-aware strategies

would have a larger impact at the cluster level. The key to

such strategies lies in the accurate application characterization,

and associated resource concurrency configuration and power

distribution.
In this paper, we study the problem of power-bounded

computing on multicore-based systems and present the Cluster

Level Intelligent Power (CLIP) coordination framework. CLIP

employs application-aware power bounded scheduling for par-

allel applications on clusters built of NUMA multicore nodes.

It characterizes the scalability of parallel applications and their

power demands, and accordingly recommends the optimal

application execution configuration and power distribution.

The framework implementation is hierarchical and consists

of two levels: the cluster level determines the number of

nodes and the power budget for each node; the node level

selectively activates the CPU cores and distributes the available

power budget to the CPU and memory within nodes. The

framework uses light-weight off-line profiling for application

characterization, and classifies workloads into three categories.

It delivers desirable performance and meets the power budget

with four steps:

1) Identify the number of participating nodes based on
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Fig. 1: Performance impacts of resource coordination for a

power budget of 120 Watts. This figure reveals significant

performance variations with different CPU-memory power

allocations and CPU core assignments.

application scalability and power demand on each node.

2) Allocate a per-node power budget between CPU and

DRAM based on the application’s features.

3) Choose core and memory affinity based on application

memory access intensity.

4) Identify the optimal number of active cores based on the

application’s scalability at the node level.

Overall, the major findings and contributions of this work

include:

• We show that power-aware hardware and workload exe-

cution management improves both performance and power

efficiency for power-constrained systems.

• We propose an application-aware power coordination

method, which comprises application characterization and

performance modeling. This method can identify a (near)

optimal configuration without exhaustively searching the

configuration space.

• We implement the power coordination framework and

evaluate it on real systems with multiple applications.

Experimental results show the framework performs close

to the optimal solution under various power budgets.

• We present several findings and insights on concurrency

configurations for high performance power-bounded com-

puting.

II. APPLICATION SCALABILITY AND IMPACT OF POWER

BUDGET

Application performance is dependent on the usage and op-

timization of concurrent computational resources. HPC system

resources are rapidly increasing in multiple dimensions includ-

ing the number of nodes, the number of cores per processor,

and the size of shared memory. While today’s large-scale

systems have been intensively exploited with parallel comput-

ing technologies, workloads can not fully use the underlying

hardware at scale due to algorithm design, workload partition,

and data movement and communication. Furthermore, power

capping causes performance degradations when the power

budget is insufficient to support the concurrency configuration.
Scalability describes how application performance changes

on parallel computing systems. It is measured with speedup

S(n) = perf(n)
perf(1) with the number of utilized cores n. Similarly,

scalability can describe how application performance changes

with processor’s speed and be measured with S(freq) =
perf(freq)

perf(flowest)
. Here freq is the processor frequency. Empirically,

S(freq) ∝ freq holds for most applications, while S(n) ∝ n
is true only for ideal or embarrassingly parallel applications.

Figure 2 illustrates how applications perform with various

processor frequency and processor count on a node with 24

cores. There are three types of scalability trends on parallel

architectures, which we denote as linear, logarithmic, and

parabolic. As the number of cores increases, application

performance increases with both linear and logarithmic trends.

The difference is that the growth rate is constant with the

linear trend and but reduces with the logarithmic trend. The

parabolic trend is much different where performance decreases

after a certain number of cores and using all cores could

deliver a significantly degraded performance. We observe that

there is an inflection point in each of the non-linear curves

in Figures 2b and 2c, which separates the scalability trends

into two segments. Both logarithmic and parabolic can be

approximated by a piecewise model, i.e., a linear piecewise

segment (S(n) ∝ n (n ≤ NP ) | NP is the inflection point),

and the remaining segment.
A power budget imposed on the system has different

performance impacts on these three types of applications.

Figure 3 shows the performances of EP, Stream, and SP

benchmarks under various power budgets. For a linear ap-

plication like EP in Figure 3a, its performance is the best

when all cores participate in execution. Thus, we do not

consider decreasing the concurrency unless the power budget

is lower than the the lower bound of the acceptable power

range [15], which is not recommended for running applica-

tions. For logarithmic applications, the optimal concurrency

decreases with the power budget, as shown in Figure 3b.

Using less cores could significantly improve the performance

of these applications if the power budget is acceptable yet very

limited. For parabolic applications, introducing a power budget

exacerbates the performance loss of the all-core configuration,

as seen in Figure 3c. Because of this behavior, coordinating the

concurrency is even more important for parabolic applications

for performance improvement. From these results, we can

conclude that coordinating thread concurrency at the node

level is necessary.
We must also consider distributing the power budget at the

cluster level in addition to the node level as the total power

budget is imposed on the entire system across the nodes.

Concurrency configuration under different power budgets is

essential at the node level, and this is the foundation to ob-

taining the optimal performance at the cluster level. Power co-

ordination between main components has a great performance

impact on the entire system [15]. If the node power budget
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(a) (b) (c)

Fig. 2: Scalability trends of linear (2a), logarithmic (2b), and parabolic (2c). The performance of linear applications increases

linearly with concurrency and processor frequency. The performance of logarithmic applications increases linearly until an

inflection point, after which performance growth drops. The performance of parabolic applications increases linearly when

concurrency is less than the global maximum. Beyond the global maximum, increasing concurrency causes performance

degradation.

is less than the lower bound of the acceptable power range,

performance decreases significantly and the performance loss

can outweigh the gain on the power savings. Contrarily, if

an excessive node power budget is allocated, fewer nodes

can be activated to execute applications and exploit algorithm

parallelism. We must consider resource allocation at the cluster

level in addition to the node level, and decide how to best

distribute the power budget to the needed nodes in the cluster.

III. METHODOLOGY

The CLIP framework consists of two levels: the cluster

level and the node level. At the node level, we select the

resource coordination configuration and predict the efficient

power range. The selection of the node level configuration

integrates the classification of applications, the selection of

the number of threads, and their mapping and available power

range on the node. The cluster level handles power and node

allocation and coordination. Figures 4 and 5 show the details

of the two levels in the CLIP framework.

A. Node-Level Application-Aware Configuration Selection

The goal of node level configuration selection is to estimate

the performance of hybrid MPI/OpenMP applications on the

node level and offer prerequisite knowledge to support for

cluster level power coordination. The configuration specifies

how many OpenMP threads to run, how to map these threads

across NUMA architecture, and how to allocate the power

among the main computer components (CPU and DRAM) un-

der various power budgets. With knowledge of the correlation

between performance and configuration under multiple power

budgets, the cluster can determine the number of nodes and

coordinate the power across available nodes from the total

cluster power budget.

Determining the number of threads and their socket affinity

is the key to finding the optimal configuration under power

budget. As demonstrated in Section II, there are three differ-

ent workload scalability trends due to their various scalable

abilities: linear, logarithmic, and parabolic. It is hard to

achieve high accuracy by simply deriving a linear regression

model to describe the relationship of scalability to the number

of threads as in [25, 6]. The main issue is that hardware

evolution causes the old methods to lose precision. In order to

cover the diversity of workload scalability in modern hardware

environments, we devise the performance prediction model in

two steps. The first step employs the classification model to

predict the scalability trend as one of the three types listed

previously. The second step trains each type of workload

independently and infers the corresponding function.
1) Scalability Trend Classification: The classification

model predicts the scalability trend by using input from

the sample configurations in the profiling stage. We simply

compare the performance under two profile stages: Perfall and

Perfhalf denoting the performance with all and half of the avail-

able cores respectively. By collecting multiple benchmarks, we

classify the applications with Perfhalf

Perfall
< 0.7 as linear type; the

applications with Perfhalf

Perfall
≥ 0.7 & Perfhalf

Perfall
< 1 as logarithmic

type and applications with Perfhalf

Perfall
≥ 1 as parabolic type.

2) Performance Prediction Model:
a) Linear Type: To estimate the performance for linear

type applications, we model the run time of the target config-

uration T imet as a linear function:

T imet =
∑m

i=1
(T imei · α(t,i)) + λt (1)

The terms α(t,i) and λt describe the relationship between the

target configuration run time and the sample configuration run

time. m denotes the number of sample configurations in the

profile stage. For the linear type, we only need to profile

half-core and all-core sample configurations to implement the

equation. α(t,i) scales up the recorded execution time, T imei,
on the sample configurations and reflects the scalability based

on hardware event rates.
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Fig. 3: Performance impact of processor power budget for linear (3a), logarithmic (3b), and parabolic (3c) applications. The

maximum concurrency is optimal for linear applications unless the power budget is very low. The optimal concurrency of

logarithmic application varies with the power budget. For parabolic applications, the performance gap between the optimal

concurrency and maximum concurrency increases when the power budget is decreased.

b) Non-Linear Types: By definition, it is not possible to

derive a linear function to describe the relationship between

scalability and concurrency for both logarithmic and parabolic

applications. Instead, we model the non-linear functions using

a piecewise function composed of two linear segments.

From Figure 2b, the speedup of these workloads increases

linearly while the thread number is less than or equal to

a specific number NP , the inflection point of the function.

When the thread number is larger than NP , the trend can

also be approximated with another linear model with a smaller

slope to describe the trend. As a result, we can divide a curve

into two parts and conclude a linear piecewise function to sim-

plify the problem without impacting the accuracy significantly.

Similarly, we can also use two linear functions to describe the

trends for the parabolic type as shown in Figure 2c.

We use multivariate linear regression (MLR) to predict the

inflection point NP for applications that have been classified

and verified. The MLR model is sufficiently accurate for our

collected data as exploited in [25, 6]. More sophisticated

machine learning methods may generate overfit and decrease

the accuracy because the amount of data collected is in-

sufficient. The MLR model utilizes the event rates and the

manually identified inflection point NP for model training;

the events table is listed in Table I. These events are related to

applications’ memory access patterns and are able to identify

which concurrency level can cause performance stagnancy or

loss.

Logarithmic Functions. After obtaining the inflection point

NP , the two segment linear functions can be derived as:{
T imet =

∑m
i=1(T imei · α(t,i)) + λt if t ≤ NP

Timet =
∑m

′

i=1(T imei · α′
(t,i)) + λ

′
t if t > NP

(2)

Equation 2 illustrates two slope and intercept parameters

to represent the scalability growth difference. Since power

increases close to linearly with the participating cores count

[16], it is not sufficient to run the application with concurrency

in the latter segment while power is not sufficient to keep all

running cores at the highest frequency. As seen in Figure 2,

frequency significantly impacts the application’s performance.

Therefore, we would prefer high frequency to high concur-

rency for logarithmic applications. Thus, this model offers

support for efficiently exploiting cluster-level power allocation

on each node.

Parabolic Functions. The function for the former segment is

derived as:

T imet =
∑m

i=1
(T imei · α(t,i)) + λt if t ≤ NP (3)

For parabolic applications, it is more urgent to find the

optimal concurrency level no matter if a power budget is

imposed. Simply using all cores or reducing the core count

without considering application characteristics could degrade

performance significantly. Since the latter segment consumes

more power and obtains lower performance, we disregard the

prediction for the n > NP segment.

TABLE I: The Haswell hardware events used in sample

configurations for prediction.

Predictor Description

Event0 Instruction Cache (ICACHE) Misses
Event1 Memory Access Read Bandwidth
Event2 Memory Access Write Bandwidth
Event3 L3 Cache Miss from Local DRAM
Event4 L3 Cache Miss from Remote DRAM
Event5 Cycles Active
Event6 Instructions Retired
Event7 Performance ratio by full cores and half cores

B. Cluster-Level Power Allocation

Power coordination at the cluster level needs to not only

consider how many nodes should be involved in the compu-

tation of the scheduled task, but also consider how to allocate

power to each applied node. In order to achieve an optimal

solution, we first use the prediction model to obtain the number

of threads in node level; after that, we could speculate the

power consumption range of the CPU and memory on the node
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with different frequencies according to the power model. The

next step is to determine the number of nodes by predicting the

performance with different configurations for the given cluster

power budget. Lastly, coordinating the power budget on each

node by considering the manufacture variability can further

decrease the impact of inter node unbalance and improve the

application’s performance [20].

1) Cluster Power Allocation: To determine the number

of nodes, we need have a good understanding of how the

power capping on each node would affect the performance.

As demonstrated by previous research [15, 16], each appli-

cation has its specific power levels for CPU and memory.

Pcpu,L1 , Pmem,L1 are the CPU and memory power consump-

tion when the CPU runs at the highest CPU frequency. A given

node power budget larger than Pcpu,L1
+ Pmem,L1

causes a

waste of power at the node level and decreases the scalability

at the cluster level. We can also obtain Pcpu,L2
, Pmem,L2

by

executing application with the lowest CPU frequency. For

a given node power budget less than Pcpu,L2 + Pmem,L2 ,

the performance of the specific node would be impacted

significantly. Thus, we can obtain several options for the node

count, each corresponding to a node power budget falling in

the range of [Pcpu,L2
+ Pmem,L2

, Pcpu,L1
+ Pmem,L1

]. For

each application, the scheduler could choose the best number

n of nodes (MPI process) that is easier to pair with the data

decomposition.

The specific power for the components of each node can be

derived from the following equations. First, the total cluster

power budget can be distributed as:

P (job) = P1 + P2 + ...+ Pk + ...+ Pn (4)

Next, we decompose the power of node Pk(k ∈ [1, n]) as

the aggregated sum of components types, including processor,

memory, and others, i.e.:

Pk = PProcT + PMemT + POtherT (5)

The power of processor PProcT can be formulated as the sum

of individual processors Pproc,i, which is composed of a base

power Ppbase,i and a set of core powers Pcj . Subsequently, we

model the power of each core for the specific workload w. NS
and NC are denoted as the number of sockets (processors) and

the number of activated cores on the processor respectively.

PProcT =
∑NS

i=1
Pproc,i (6)

Pproc,i = Ppbase,i +
∑NC

j=1
Pcj (w) (7)

The ith processor power is divided as the base power and the

load power by activated cores in Equation 7.

Similarly, the power of memory PMemT can be typed as

the sum of memory components’ power which is broken down

with a base power Pmbase,i and an activity power Pmload,i(w):

PMemT =
∑NS

i=1
Pmem,i (8)

Pmem,i = Pmbase,i + Pmload,i(w) (9)

Fig. 4: Overview of CLIP. The target clusters consist of a

number of nodes built of multiple multicore-based processors

with NUMA architecture. The configuration recommendation

module chooses the number of nodes and determines the node

power budget Pnode based on measured performance events

and power consumption.

2) Inter Node Power Coordination based on Manufacture
Variability: The manufacture variability is one of the key

factors that impact the performance across nodes. Inadomi’s

work [20] demonstrated that manufacture variability can cause

significant imbalance among nodes and increase the syn-

chronization cost. To address this problem, we adopt the

same method [20] to handle the variability. However, our

experimental nodes are quite homogeneous, thus we only

coordinate power between nodes when the manufacture power

variability exceeds a threshold.

IV. SYSTEM DESIGN

A. CLIP Overview

We build a framework named CLIP to support application-

aware power coordination on multicore-based clusters with

NUMA architecture. As illustrated in Figure 4, CLIP includes

an intelligent, experimental profiling module, a data-driven ex-

ecution configuration recommendation module, an application

execution module, and several helper tools to provide a user-

friendly convenient power-bounded computing environment.

B. CLIP Components

1) Smart Profiling Module: This module reduces the time

required to create an experimental profile. It runs several

iterations of the specified task application with sufficient power

and utilizing all cores. Compared to a full run, which is usually

hundreds or thousands of iterations for most HPC applications,

smart profiling with a few iterations incurs minimal overhead

[31]. The collected data is used to distinguish mapping prefer-

ence as in [16] and determine the core affinity for the half-core

profile configuration. After that, we can derive the scalability

trend type of the task. The number of subsequent profiling

depends on the classification results. By exploiting the smart

profiling module, we can gather all the data for predicting the

performance with high accuracy using only two or three total

sample configuration profiles.
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Fig. 5: The architecture of CLIP at the node level. Pro-

cessors and memory can be capped with specific power levels

and per-core DVFS is available. The Configuration Recom-

mendation Module selectively activates cores and decides the

power allocation between CPU and DRAM,

2) Configuration Recommendation Module: The configu-

ration recommendation module implements the decision en-

gine which takes a four-tuple (program, problem size, power

budget, and profile data) as input and returns a parallel

workload execution configuration for each task to the appli-

cation execution module. By collecting data from the smart

profiling module, the configuration recommendation module

first determines the optimal power range of each node and

decides the number of nodes for the given task. Then, the

configuration recommendation module classifies the trend of

the application and selects the optimal concurrency under the

power budget.
3) Application Execution Module: The application execu-

tion module provides a user interface, which takes a program

and checks whether the program has been recorded in our

knowledge database. In the case of a negative response, the

application execution module calls the smart profiling module

and inputs the gathered data to the recommendation module.

Following that, the application execution module creates a

script to launch the job with the execution configuration on

a power-bounded multicore cluster through our job scheduler.
4) System Interface Helper Tools: It includes several cus-

tomized system tools such as a power meter reader, a RAPL

and DVFS power controller, and a performance event collector.

The tool set interacts with system kernels, libraries, modules,

and runtime environments. It automates the collection and

recording of performance and power data for jobs managed by

the smart profiling module and application execution module.

C. Power Bounded Scheduling Algorithm

Algorithm Descriptions: As illustrated in Algorithm 1, the

proposed scheduler acts in two steps:

1) The scheduler searches for the given job in the knowledge

database to decide if it is necessary to start smart profil-

ing. By smart profiling or searching from the knowledge

database, the system is able to acquire the optimal power

range [PcpuLo
+ PmemLo

, PcpuHo
+ PmemHo

] for each

node. After that, the system inputs the profile data and

the given power budget recommendation to decide the

number of nodes and the power budget for each node.

2) The scheduler inputs the power budget for each node and

the profile data for each applications to the recommen-

dation module and gets the suggested power budget for

the CPU and memory, the number of activated cores, and

the optimal core affinity.

Algorithm 1 CLIP (Cluster level intelligent power coordina-

tion system).

function CLIP(App, C)

Input: Pub: the total power budget for the cluster;

Input: App: the application under study

Input: C: the cluster with Ntotal nodes

Input: Ntotal: the total number of nodes in the cluster C

Output: Nnodes: suggested number of active compute nodes

Output: Pcpuruni
: suggested CPU power for node i

Output: Pmemruni
: suggested memory power for node i

Output: Ncores: suggested number of active cores on each node

Output: Map: suggested mapping affinity

[PcpuHo
, PcpuLo

, PmemHo
, PmemLo

, Profile]← SmartProf(App)

[Ncore,Map]← Recommendation (Profile)

if App has a set of predefined number of processes Ndef1 , ..., Ndefn

then
if Ndefk ≤ Pub/(PcpuLo

+ PmemLo
) < Ndefk+1

then
Nnodes ← Ndefk
Pnode ← Pub/Nnodes

for every node i to be activated do
[Pcpuruni

, Pmemruni
]← Pnode (Equation 5)

end for
end if

else
if Pub > Ntotal ∗ (PcpuHo

+ PmemHo
) then

Nnodes ← Ntotal

else
Nnodes ← Pub/(PcpuHo

+ PmemHo
)

end if
for every node i to be activated do

Pcpuruni
← PcpuHo

+ Pcpuvi

Pmemruni
← PmemHo

+ Pmemvi

end for
end if

end function

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Testbed

Our experimental platform is an 8-node cluster. Each

node has two 12-core Intel(R) Xeon(R) CPU E5-2670v3
@ 2.30GHz processors and 128 GB DDR4 DRAM evenly

distributed between two NUMA sockets. The codes are com-

piled with openmpi 2.0.1. We use RAPL [21] to cap and

measure power for the processors and memory modules in

our experiments.
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Fig. 6: Parallel speedup ratio (half-core/all-core) comparison.

Green: linear applications; Blue: logarithmic applications; and

Red: parabolic applications.

We use the parallel hybrid MPI/OpenMP benchmarks listed

in Table II in our evaluation. These benchmarks have differ-

ent workload characteristics spanning from highly scalable,

compute-intensive workloads to moderately scalable, memory-

intensive workloads. We include two different parameters for

the CloverLeaf benchmark to show that the input parameters

may affect the power coordination decision for some applica-

tions.

B. Application Classification and Prediction

We profile the power and performance for each benchmark

with no more than three sample configuration executions. First,

we run the application using all available cores and measure

the memory bandwidth and cross-NUMA access intensity

to determine the core affinity. The next step is to run the

application with half of the available cores using a core affinity

mapping pattern decided by first step. Using the first two

configurations, we are able to identify the scalability trends

and predict the inflection point. The last step uses the predicted

configuration and measures the events and power again to

deduct the model.

1) Classification: Figure 6 visualizes the benchmark

speedup ratio of half-core to all-core when no power bound

is imposed. The figure reveals that AMG, miniMD, and

CoMD benchmarks are linear type applications and their

performances grow fast with the core counts. Using the half-

core configuration only achieves about a half of the perfor-

mance delivered by the all-core configuration. BT-MZ, LU-

MZ and CloverLeaf are logarithmic type applications, for

which performance still increases by scaling from the half-

core configuration to the all-core configuration but the perfor-

mance gain becomes less. TeaLeaf, miniAero and SP-MZ are

parabolic type applications and their performances drop from

the half-core configuration to the all-core configuration.

To be specific, BT-MZ is the multi-zone version of BT

benchmark. The stagnant scalability of BT-MZ for size C

beyond half-core is due to function exch qbc, which signifi-

cantly affects the performance of the BT-MZ version. Thus,

we change the concurrency setting phase-by-phase for the BT

benchmark to increase performance.

Fig. 7: Predicted and actual inflection points comparison.

Logarithmic applications achieve high power efficiency at the

inflection point. Parabolic applications achieve the highest

performance and power efficiency at the inflection point.

2) Model training and prediction: In order to cover ap-

plications with various characteristics, we select benchmarks

from NAS Parallel Benchmarks (NPB) [1], HPC Challenge

Benchmark (HPCC) [28], UVA STREAM [32], PolyBench

[34] and others to help us train the parameters and predict

inflection points. Model evaluation results in Figure 7 show

the predicted inflection points and the comparison to the

actual values through an exhaustive search. We observe that

applications perform worse with an odd-value concurrency

than with a close even-value concurrency in general. Even-

value concurrency allocates resources evenly and thus im-

proves performance, especially for logarithmic and parabolic

applications. Thus, we floor the predicted results to an even

number. The results indicate that the predictions are strong

for most applications and only underestimate for LU-MZ and

TeaLeaf.

C. Clip Performance Evaluation

In order to evaluate the performance of CLIP, we compare

it with three other coordination methods under various given

power budgets.

• All-In. This utilizes all supplied nodes. It allocates 30 watts

to memory and the remaining power to CPU on each node

without considering the cluster power budget. All of the

cores participate in application execution. To be specific,

allocating 30 watts to memory meets most applications’

memory power requirement and won’t cause very significant

degradation for extremely memory intensive applications’

performance.

• Lower Limit. This method ensures that no nodes partici-

pating in the computation are allocated a budget less than a

preset value, i.e., 180 Watts. If the total power budget cannot

allocate every node more than 180 watts, the scheduler

decreases the number of active nodes. Additionally, this

method utilizes all cores on each active node and allocates

30 watts to memory.

• Coordinated [15]. This method ensures that the nodes

participating in computation are allocated a budget no less

than a preset value specific to the application [15]. It
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TABLE II: List of Benchmarks Used in This Study

Benchmark Description Parameters Workload Pattern Scalability Type

BT-MZ Block Tri-diagonal solver C compute logarithmic
LU-MZ Lower-Upper Gauss-Seidel solver C compute/memory logarithmic
SP-MZ Scalar Penta-diagonal solver C compute/memory parabolic
CoMD classical molecular dynamics -n 240 240 240 compute linear
AMG algebraic multigrid solver -n 300 300 300 compute/memory linear

miniAero mini version to solve the compressible Navier-Stokes equations default compute parabolic
miniMD force computations default compute linear
TeaLeaf solves the linear heat conduction equation Tea10.in compute/memory parabolic

CloverLeaf solves the compressible Euler equations on a Cartesian grid clover128 short.in computer/memory logarithmic
CloverLeaf solves the compressible Euler equations on a Cartesian grid clover16.in computer/memory logarithmic

coordinates power between CPU and memory according

to the power model. The Coordinated method executes

applications at the highest possible concurrency.

• CLIP. It guarantees that the participating nodes are al-

located with a budget no less than the lower bound of

the acceptable power range for the specified application.

Therefore, it decreases the node count to ensure each node

has a reasonable power budget if the cluster power budget is

not sufficient for all supplied nodes. Besides, CLIP changes

the concurrency on each node according to the application

scalability type and total power budget, and also coordinates

power allocation between CPU and memory.

Figures 8 and 9 summarize our comparison of the four

methods. In the comparison, we use the relative performance

based on the All-In method without a power bound. The two

figures support the following observations:

1) CLIP achieves similar performance as All-In for most

of the applications under study, and outperforms ≥ 40%
for miniMD and sp-mz applications of the parabolic type,

when there is no specified power bound.

2) CLIP performs close to the optimal for all the tested

benchmarks if the power budget is unlimited or high.

3) CLIP outperforms All-In, Coordinated, Low-Limit for

most cases, specially for logarithmic and parabolic appli-

cations.

4) CLIP defends Coordinated for parabolic applications

(SP-MZ, miniAero and TeaLeaf) by up to 60% overall.

When the thread count exceeds optimal, these parabolic

applications experience a worsened performance but con-

sume more power. Carefully distributing resources for

such applications significantly improves performance.

5) CLIP outperforms Coordinated for logarithmic when

the power budget is low. logarithmic applications is

common among big data applications that require higher

memory bandwidth. This observation confirms the hy-

pothesis that classifying applications and setting corre-

sponding configurations is beneficial for power-bounded

computing.

To conclude, the experimental results confirm that the

proposed resource coordination method provides an efficient

and effective solution for power-bounded cluster computing,

and our framework and implementation are applicable to real

systems and applications.

VI. RELATED WORK

Power is consistently one of the top challenges for HPC

evolving from a soft concern several years ago to a strict

bound today [14]. Accordingly, the objectives and approaches

of HPC power management have continuously evolved to fit

the changing requirements of HPC. With the looming approach

of the exascale era, power increasingly limits the scalability

and operation of high performance computing systems [35].

Power bounded computing is far different from earlier

power aware computing [10, 26, 39] or power capping and

budgeting [41, 36, 19, 5]. Power aware computing aims to

reduce power consumption or save energy with little per-

formance impact by integrating methods utilizing component

performance-power states. Power capping and budgeting tech-

nology mainly focus on peak power and thermal emergency

control in commercial data centers [19]. Because both the

hardware architecture and the workloads (usually being se-

quential and independent) running in commercial data centers

dramatically differ from HPC and the parallel workloads,

most of the power capping and budgeting techniques are not

applicable in an HPC environment directly.

Recently, many power aware, power capping, and power

budget ideas have been expanded into HPC area by re-

searchers. These shared hardware and software technologies

could be divided into these categories:

1) Software control of the component power states such as

applying DVFS and clock-throttling to limit the power of

CPU [42, 24, 22, 3, 2, 13, 9], memory [7], or both [18,

4, 37, 39].

2) Software control of workload execution such as control-

ling the level of concurrency [38, 5, 30].

3) Hardware-based power capping by using RAPL [21, 8].

4) Hardware-based power coordination between main com-

puter components [40, 15].

5) Combined software and hardware methods [43, 31].

In this paper, we focus on utilizing software and hardware

more efficiently by adapting concurrency management and

coordinating power between CPU and memory on the cluster.

Recognizing the importance of accurately achieving the

near optimal concurrency and power budget range, other

researchers have also studied the prediction of the optimal

number of threads [6, 25] and optimal power allocation

between CPU and memory [40]. Both ACTOR [6] and Li

et al. [25] use hardware events rate to predict the optimal
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(a) (b)

Fig. 8: Performance Comparison of different power allocation methods under high power budget

(a) (b)

Fig. 9: Performance comparison of different power allocation methods under low power budget

concurrency; however, the new features of current many-core

hardware architecture make it infeasible to use these prediction

methods directly.

Cluster-level power coordination generally considers the

number of active nodes and power distribution among these

nodes for a given total budget. Existing work takes the effect

of manufacturing variability into account to eliminate the load

imbalance [11, 17, 29]. Hardware overprovisioning [33] gives

promising exploratory results from dynamically changing the

node count, concurrency parameters on the node level and

changing the power budget for each node, but fails to conclude

with a straightforward solution. Conductor [31] exhaustively

searches available configurations to find the optimal thread

concurrency, without discerning the optimal number of nodes.

In addition, Conductor profiles applications with different

configurations on multiple nodes, with which the impact

of communication on parameterization is unknown. POW-

shed [11] shifts power to more power-intensive applications to

improve throughput without exploring concurrency throttling.

Our work differs from these prior studies [11, 17, 29, 31]

in three main aspects. First, our study reveals the different

impacts on applications with different types of scalability.

Such findings are helpful for designing power management

methods. Second, we develop an intelligent configuration

recommendation system, which suggests application execution

configurations and power coordination between CPU and

memory without exhaustive searching. Third, our approach

considers both node-level and cluster-level techniques and

integrates them tightly to improve application performance on

NUMA multicore-based systems under power bound.

VII. CONCLUSION

In this paper we present CLIP, a framework for cluster-level

power-bounded resource coordination on NUMA multicore-

based systems. It utilizes a novel approach to identify ap-

plication scalability and explores multi-dimensional power

management techniques to improve performance under a

power budget. Experimental evaluations demonstrate that the

scheduler is able to identify near-optimal configurations for

given power budgets.

To the best of our knowledge, this is the first power bounded

scheduler that simultaneously considers inter-node scalability,

node-level concurrency, and main component power coordi-

nation. As power has been a scarce resource, power-bounded

research expands the tools to address power challenges in the

exascale era. Our evaluation shows that CLIP outperforms

prior work significantly for complex applications. The average

549

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 24,2021 at 23:57:12 UTC from IEEE Xplore.  Restrictions apply. 



improvements are close to 20% under low power budget. By

implementing the scheduler and evaluating it in a real cluster,

this work reveals some key insights about power bounded

computing on large scale systems and provides a solution

with a low overhead. One limitation of this work is that CLIP

doesn’t directly support jobs launched with predefined node

and core counts. We plan to develop a runtime system to

address this issue and accommodate the needs in the future.
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